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ABSTRACT 

One of the main factors for the success of the knowledge discovery process is related to the comprehensibility of the 
patterns discovered by the data mining techniques used. Among the many data mining techniques found in the literature, 
we can point the Bayesian networks as one of most prominent when considering the easiness of knowledge interpretation 
achieved in a domain with uncertainty. However, the static Bayesian networks present two basic disadvantages: the 
incapacity to correlate the variables, considering its behavior throughout the time; and the difficulty of establishing the 
optimum combination of states for the variables, which would generate and/or achieve a given requirement. This paper 
presents an extension for the improvement of Bayesian networks, treating the mentioned problems by incorporating a 
temporal model, using Markov chains, and for intermediary of the combination of genetic algorithms with the networks 
obtained from the data. 

Keywords: Bayesian networks, Markov chains, genetic algorithms, time models, optimization. 
 

1. INTRODUCTION 

One of the main factors for the data mining process success is due to the comprehensibility of the discovered patterns 
[1]. In this way, the use of mining techniques that provide mechanisms of presentation and visualization to simplify the 
analysis of the knowledge obtained can strongly contribute for the users to measure the quality of this knowledge. This 
quality is often given by the utility, novelty and interestingness of the patterns obtained [2]. 

Among the data mining techniques available, it is possible to point the Bayesian networks (BNs) as one of most 
prominent ones when it comes of interpretability of the knowledge obtained in a domain with uncertainty, once that they 
are capable to represent the complete causal model from the date [2] [3]. 

However, the BNs presents some “restrictions”, amongst which we can point: the difficulty to correlate the variables 
considering the factor of time and the difficulty to establish which is the optimum combination of states for given 
variables that would achieve a certain requirement (desirable state for a certain variable of the domain). 

This paper presents methods to treat the mentioned problems by incorporating a stochastic model, associating Markov 
chains to the BNs; and by combining genetic algorithms (GAs) with the networks obtained from the data. 

The paper is organized as follow: in section 2, the basic concepts of BNs are shown. Section 3 presents the methods for 
improving the interpretability of the BNs, using the concepts of Markov chains. In section 4, the use of GAs is presented 
for the discovery of the optimum combination of values for the variables of a BN, as a way to maximize a target variable. 
The final remarks of the paper are presented on section 5. 
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2. BAYESIAN NETWORKS  

The BNs can be seen as models that codify the probabilistic relationships between the variables that represent a given 
domain [4]. These models possess as components a qualitative structure, representing the dependences between the 
nodes, and a quantitative, evaluating, in probabilistic terms, these dependences [2]. Together, these components 
propitiate an efficient representation of the distribution of joint probability for the variables X of a given domain [3]. The 
joint distribution is given by (1): 
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Where nccc ,...,, 21  are possible evidenced events and ix  is the event we want to observe. 

One of the great advantages of the BNs is its semantics, which facilitates, given the inherent causal representation of 
these networks, the understanding and the decision making process, by the part of the users of these models [2]. This if 
due, basically, to the fact that the relations between the variables of the domain are able to be visualized graphically, 
besides providing an inference mechanism that allows to quantify, in probabilistic terms, the effect of these relations. 

However, these inferences do not provide time analyses in the data, neither accomplish optimization processes, aiming to 
obtain the values that would maximize a given variable. 

The majority of the works proposed in the literature that establishes new strategies of inferences in models that use 
probabilistic reasoning are based on hybrid solutions, such as the union of solutions that involve Bayesian techniques, 
Markov models, GAs and Fuzzy Logic [4] [5] [6]. 

In sections 3 and 4, the mechanisms that implement the inferences of forecast and optimization, using, respectively, 
Markov chains and GAs will be presented. 

 

3. MARKOV CHAINS INCORPORATION MODEL 

Despite allowing, through inferences, to verify the future behavior of its attributes, the BNs does not present means that 
would allow us to discover how close or distant these events would be from happening, that is, it does not allow us to 
quantify and point in the time how long it would take for the impact of these inferences to occur. 

A classic initial problem when working with the BNs in the time would be the existing necessity to mount conditional 
probability tables for each discrete unit of time analyzed. This way, it is assumed here, as well as described in literature 
[4], to be working with a stationary random process. 

In this paper it is presented the time analysis from the modeling of the data and characteristics proceeding from a BN 
into a Markov chain. The idea is to establish an isomorphism of a BN in the time as being a discrete time Markov chain. 

The model used seeks to analyze the forecast, differently as it would be if a hidden Markov model would be used or even 
a dynamic Bayesian network, modeling in a simplified way the Markovian time transition according to a 1st order 
process, but also intrinsically considering in its transitions the other variables of the domain that also might also 
influence in the behavior of this attribute. That is, just as a Markov chain, a BN can be seen as a matrix of attributes that 
are correlated and that also has an influence over each other throughout the time. 

To exemplify the model, a simple example of a BN can be considered (Figure 1), composed by only two variables: 
Grade and Study; where the grade obtained on a given test depends on the amount of study applied. It is also assumed 
that the tests are taken on a monthly time scale. 

 

Fig. 1. Bayesian network mounted with the variables Grade and Study. 

 

Study Grade 
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It is considered as possible values for the attributes the following: Study (Hard, Medium, Little); and Grade (Excellent, 
Good, Regular). In this way, the BN would also present the values of initial and conditional (for Grade only, once that it 
is the only attribute that possess a parent attribute, that is, a dependence relation of the Grade given the Study) 
probabilities. 

The dependences model and the probability tables would represent all the data the BN could offer us. Following the 
Markovian modeling, what we are seeking to obtain is the time instant n  that, given an inference, a determined 
probability configuration of an attribute would happen (e.g. considering our example, when we would have, given that 
we study Hard, that the grade obtained would be Excellent with probability of 70%, Good with 25% and Regular with 
5%). 

Given that what we seek is in fact the new configuration of a determined attribute, what we end up needing is to mount 
the Markovian transition matrix of this attribute. This is done by mapping the transition probabilities for the states of the 
attribute onto the matrix, based on the conditional probabilities that it possess given its dependencies with the other 
attributes (e.g. also considering the example, we must map the transition probabilities of Grade for: Excellent and pass to 
Good, Excellent to Regular, Excellent and achieving Excellent again etc). That is, we would have to mount a Markov 
transition matrix, according the model on Table 1. 

Table. 1. Model of the Markov transition matrix to be mounted. 

Grade\Grade  Excellent Good Regular  
Excellent 

⎢
⎢
⎢

⎣

⎡
 

EEA →  GEA →  REA →  

⎥
⎥
⎥

⎦

⎤
 Good EGA →  GGA →  BGA →  

Regular ERA →  GRA →  RRA →  

However, considering only the factor of study in relation to the grade is not enough to verify the relation of the variable 
Grade with itself and to make the transition between its states, once that this way the Markov transition matrix would 
immediately converge to the stationary state. This way, we must also consider the value of the attribute Grade in a 
previous point of time, acting together with the variable Study and thus obtaining the transition relations for the variable 
Grade. 

For such, the first record in the existing historical database is ignored so that we can insert in the analysis, analogously to 
a 1st order Markovian process, the Previous Grade obtained. Tables 2 and 3 present the initial and conditional (Study, 
Grade and the Grade in the previous period) probabilities of the current Grade considering the Study and the Previous 
Grade (Grade-1). 

Table. 2. Initial probabilities of the Bayesian network. 

Study  Grade Grade Grade-1 
Hard (Ha) 0.133  Excellent (E) 0.210 0.333 

Medium (Me) 0.534  Good (G) 0.467 0.333 
Little (Li) 0.333  Regular (R) 0.323 0.333 

Table. 3. Conditional probabilities of the Bayesian network – P(Grade | Study ∩ Grade-1). 

Study ∩ G-1\Grade E G R 
Ha ∩ E 0.934 0.033 0.033 
Ha ∩ G 0.333 0.333 0.333 
Ha ∩ R 0.333 0.333 0.333 
Me ∩ E 0.491 0.491 0.018 
Me ∩ G 0.033 0.934 0.033 
Me ∩ R 0.018 0.491 0.491 
Li ∩ E 0.333 0.333 0.333 
Li ∩ G 0.018 0.491 0.491 
Li ∩ R 0.033 0.033 0.934 
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The calculus for the Markov transition matrix would follow according (2): 
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Generalizing we would have (3): 
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Where: 
A  is the observed variable; 
Pa  is the variable that represents the attributes of which variable A presents a dependency; 
n  is the number of possible states and/or combinations that the parents of this attribute can assume; 
m  is the number of states the attribute can assume. 

Calculating from (3), we obtained the Markov transition matrix presented below (Table 4). 

Table. 4. Markov transition matrix obtained. 

Grade\Grade  Excellent Good Regular  

Excellent 

⎢
⎢
⎢

⎣

⎡
 

0.497 0.378 0.125 

⎥
⎥
⎥

⎦

⎤
 Good 0.068 0.707 0.225 

Regular 0.065 0.318 0.618 

The matrix obtained presents the transition probabilities values for the states of a given variable analyzed. If we apply a 
solution of the chain to find the probabilities vector in a given time n, we will then have to calculate the nth power of the 
random probabilities matrix. As described by the Equations of Chapman - Kolmogorov [7], presented below: 

In matricial notation, the expression is: 

 )()()( nmmn PPP −×=  (4) 

Where )(nP  is the transition matrix in the step n. From (4) it can be concluded, therefore, that: 

 nn PP =)(  (5) 

Demonstrating that the matrix in step n corresponds to the nth power of this matrix. Thus, for example, if the unit of time 
is discretized in months and if we wanted to obtain the probabilities values for the grades occurrence three months from 

now, we would have that to find the power 3P  of the matrix (Table 5). 

Table. 5. States transition matrix in the step n = 3. 

Grade\Grade  Excellent Good Regular  

Excellent 

⎢
⎢
⎢

⎣

⎡
 

0.1878 0.5274 0.2851 

⎥
⎥
⎥

⎦

⎤
 Good 0.1085 0.5561 0.3359 

Regular 0.1071 0.4976 0.3974 
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4. MAXIMIZATION MODEL 

The objective of the maximization model is to identify the best configuration, among the possible values of the existing 
variables in the domain, that maximize a given attribute, identifying initially the other variables that present a 
dependency from it. It is also worth mentioning that, just it is possible accomplish the same process using not the 
maximum value, but any other value that may be relevant. 

In contrast with the way the GAs are used in the majority of the hybrid systems proposed in literature, where it is 
adopted to optimize the process of learning of the structure of BNs [5] [8] [9] [10], here, this technique is used for the 
discovery of the most probable values of the variables of a BN, given the value of an key attribute. 

The analyses described here were originated from the demands of the research project “PREDICT - Support Decision 
Tool for Load Prediction of Electrical Systems”, financed by the “National Agency of Electric Energy of Brazil - 
ANEEL” in course since September of 2004. This project, made together with the Government of the state of Pará and 
the Power Supplier the State of Pará, aims at projecting and implementing a decision support system, using mathematical 
and computational intelligence methods, to foresee the necessity of energy purchase in the futures market and to make 
inferences on the power system situation, from the consumption historical data of its correlations with socio-economic 
and climatic data. 

The case study example, proposed by the domain specialists of the power system market, and used for the optimization 
model was to discover under which circumstances the power consumption would be maximized. For such, the 
optimization model was based on a few steps. 

Firstly, identify which, among the attributes of the database, influences directly in the power consumption; also this way 
building the BN structure. 

For the learning of the BN graphical model, that is, for the learning if existing correlations between the variables, it was 

used the search and scoring algorithm K2 [11], which allows us to find the most probable belief network structure SB  

given a dataset D . The K2 algorithm applies a Bayesian scoring method, according (6). 
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Where: 
n  is the number of nodes; 

iq  is the number of configurations of the parents of the variable iX ; 

ir  is the number of possible values of iX ; 

ijkN  is the number of cases in D  where the attribute iX  is evidenced with its value k , and the configuration of 

the parents of iX  is evidenced with value j ; 

ijN  is the number of observations in which the configuration of the parents of iX  is evidenced with the value j , 

being ∑
=

=
ir

k
ijkij NN

1

. 

Analyzing it, it was verified, and confirmed by the domain experts, the correlation of the power consumption with some 
of the remaining variables, especially with the following: the number of employments in the sectors of the transformation 
industries and agropecuary, and the values of the turnover total and of the dolar; which were shown to be more 
representative than the others.. 

Given the knowledge that the variables of number of employments in the transformation industries (emp_ind), 
employments in the agropecuary (emp_agro), value of the turnover total (val_turn) and the value of the dollar (val_dol) 
are the main influencers in the variation of the power consumption, they were used for the next step, which consisted in 
the mounting of a Naive Bayesian Network (Figure 2), in which all of the remaining attributes (emp_ind, emp_agro, 
val_turn and val_dol) were dependent of only one, in our case, the power consumption. 
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Fig. 2. Example of a Naive Bayes. 

 

All the attributes were discretized on ten states, according to the frequency of their values, allowing us to verify the 
probability associated to each one of them, as well as the conditional probabilities existing between the variables. 
Once mounted the network, the next step is, making use of the data given by the BN, search the network attributes for 
the states that would maximize the power consumption. In this step we use an altered GA. 

Here, instead of a cost function to validate the individuals of the population, it is implemented a Bayesian inference 
algorithm (equation 1); each of the individuals of the genetic algorithm represents an inference configuration of the BN 
generated randomly (e.g. evidencing the variables emp_ind with the state 7, emp_agro with state 1, val_turn with 7 and 
val_dol with 4 generates the individual 2-1-7-4). Each individual is then, for its classification, submitted to the Bayesian 
inference module in order to verify the probability in which the attribute power consumption would be maximized, 
obtaining, at the end of the iterations, the best possible configuration of inferences on the BN for the maximization of the 
power consumption.  

However, we would have at the end of this step (after the GA analysis) only the respective states (i.e. band of values) for 
this maximization, instead of a single value (for each attribute), which is what we seek. For such, we make use again of a 
GA; but this time a traditional GA, whose aptitude function we obtain from the data. 
The function used for the GA is obtained from a regression of multiple variables [12] [13] [14] made over the attributes 
of the network. The multivariate analysis is however made over the consumption data, but considering only the data 
instances located within the bands found in the previous step. This way, we obtain an equation with a good 

representativity ( 2R  of approximately 0.9039) over the domain. The equation obtained is presented below. 

Y = 258,598,510.5 + 3,675.6834 1X×  + 4,430.9036 2X×  +  

0.4701 3X×  - 12,182,208.61 4X×  

 

(7) 

Where Y  represents the power consumption and 1X , 2X , 3X  and 4X  represent the values of the attributes emp_ind, 

emp_agro, val_turn and val_dol, respectively. 

Based on function (7), the GA is then used, thus obtaining the values, for each of the attributes, that would maximize the 
power consumption. Mentioning again that the individuals evaluated by the aptitude function (7) are only those within 
the bands of values that maximize the value of consumption. Thus, in order to achieve the occurrence of the maximum 
consumption, equivalent the 305,760,544 MWh, it is necessary that the values on Table 6 are observed, for the attributes 
emp_ind, emp_agro, val_turn and val_dol. 

Table. 6. Values of the attributes for the maximization of the consumption value. 

Attribute Value 
emp_ind 5,380 

emp_agro 3,357 
val_turn R$ 100,752,576.00 
val_dol R$ 2.861 

It is worth mentioning that the optimization model used is not restricted only to the discovery of the maximum values of 
consumption, but can also be used to identify the scenarios that cause a minimum, average or another value to be reached 
by the power supplier, given the variation of the considered economic aspects. 

AttribN Attrib2 Attrib3 ... 

Attrib1 
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Among the main results obtained in the “Predict” Project with the use of this model, it is possible to highlight: the 
extension of the interpretability of the generated BNs to measure the causal relationship for the consumption and the 
socio-economic variables, from the discovery of the values that compose an optimum combination given a certain target, 
for example, the consumption; and the interest of those involved in the Project in using the functionalities of the model 
for many other scenarios, not only relative to the power consumption, but also to government actions (e.g. discovered of 
the variables, that would maximize the employment and income), has encouraged and certified the use of the proposed 
model. 

 

5. FINAL REMARKS 

The possibility to represent graphically the structure of the patterns obtained from the data, as well as the exploratory 
character of the analyses allowed by the BNs, makes possible to indicate more deeply the relationship between the 
variables of a domain, what favors the increase of the comprehensibility of the discovered patterns, as well as the 
identification of the usefulness and relevance of these patters. 

Statistical models of correlation and regression can associate the idea of time to many variables, however, possess 
restrictions regarding the studied scale, besides omitting information such as dependences between the variables. Thus, 
to keep the characteristics of interpretability, adding a time approach is a sufficiently interesting contribution for 
applications that represent problems of the real world, in which the time connotation is almost always obligatory. For 
such, this work proposes a Markovian approach to represent correlations in the time. This approach introduces 
innumerable advantages, amongst which we can point that, the Markovian models possess relatively simple solutions 
compared to its “computational effort” and to the mathematical complexity involved, what stimulates and facilitates its 
use. 

Moreover, there is another present necessity for studies of problems of the real world, that, usually, require some kind of 
interpretation relating aspects of optimization, of cost functions and maximization and minimization of values of the 
involved variables.  

Again, traditional methods of optimization (simplex, for example) or models of evolutionary computing can be used. 
This work proposes a hybrid model based on the association of the interpretation given by the BNs with GAs, in order to 
obtain, given the value of a parameter-target, the Bayesian combination necessary to achieve it. Thus, the cost function 
becomes a BN. 

With these strategies it is possible to extend the interpretability of the BNs and adjust them even further for applications 
of the real world, providing the decision support systems with innumerable other possibilities of interpretation and 
inferences. 
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