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Abstract 
 
This work presents an analytical model based on Maxwell’s 
equations for current density and electromagnetic field structure 
calculations in multi-conductor cables. One example of such 
cables is a composite fiber-optic overhead ground wire (OPGW). 
A circular multilayer waveguide model is used to represent 
approximately this cable. The waveguide consists of four layers: 
dielectric (silica) in the core, aluminum in the intermediate layer, 
steel in the outer layer and air. We analyze analytically TMz

0n 
modes of the waveguide which have axial symmetry. The 
numerical results presented here are the dispersion characteristics, 
the distribution of the electromagnetic fields and the variation of 
the current density in the cross-section of the waveguide as a 
function of frequency. This model allows one in particular to 
investigate the skin effect and the electromagnetic fields inside 
and outside of the cable. 

Keywords: OPGW, waveguide model, current density, 
dispersion characteristics, electromagnetic fields, skin effect. 

1. Introduction 
 
The multi-conductor cable OPGW is used with the double 
function: of lightning protection for high voltage transmission 
lines, and as a communications channel through the optical fibers 
embedded in the cable structure. The optical fiber package is 
protected by an aluminum tube, which is covered by wires made 
of steel or steel-aluminum weld. When submitted to short-
circuited or lightning conditions, several factors, such as caging, 
plastic deformations in the tube, disruption and/or destruction of 
the armored steel wires, determine damage effects in such cables, 
which could compromise the cable integrity. The calculation of 
heat distribution in the cross-section of a cable [1] is based on the 
distribution of current density, which in its turn, depends on the 
skin effect. Knowing the current pulse in the cable, one can 
calculate the spectrum of the pulse, and consequently, the range of 
frequencies where the most part of the electric power is 
concentrated. The following analysis of the current density 
distribution therefore can be fulfilled in the frequency domain. We 
present in this paper an electrodynamic model of a multiconductor 
OPGW cable. This model is used for analysis of current density 
and electromagnetic field distribution in the cable. In our model, 
the real cable is substituted by a multilayer structure consisting of 
a dielectric rod, an intermediate aluminum layer and an outer 
layer of steel.  In contrast to earlier publications [2,3], in our 
analysis we do not introduce the approximation: “in metals, 
conduction current is much more greater than the displacement 
current”, and this allows us to analyze a wider class of 
electromagnetic problems.  

2. Mathematical Model 
 
The cross section geometry of the OPGW cable and the 
corresponding waveguide model are shown in Fig. 1a and Fig.1b, 
respectively. The model consists of four homogeneous layers: 
dielectric (ρ<a), aluminum (a<ρ<b), steel (b<ρ<c), and air (ρ>c).  
The metal layers under consideration have finite conductivities. 
The analysis of the waveguide is based on Maxwell’s equations in 
the frequency domain. As a first step, we consider the eigenvalue 
problem. We shall look for the electromagnetic fields TMz

0n and 
the currents which do not have variations with respect to the 
azimuthal coordinate φ, i.e. ∂/∂φ=0 and n is a nonnegative integer. 

 

                      
                                                  (a) 

 

            
                                                   (b) 

 

Figure 1. Cross section geometry of the OPGW cable. 
(a) real geometry. (b)  geometry of the analytical model. 



2.1 General electromagnetic fields solutions 

From the Maxwell equations in cylindrical coordinate system in 
the frequency domain, the set of equations for TMz modes for the 
layers 1-4 shown in Fig. 1 is given by 
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where ω=2πf is the angular frequency, f is the frequency in Hz, µ 
and ε are, respectively, the magnetic permeability and the electric 
permittivity of the layers under consideration (Fig. 1b). Using 
exp(-jkzz) dependence of the electromagnetic fields, we obtain the 
following system of equations: 
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Using the fields in (1)-(3), the following equations are obtained 
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Substituting (8-9) in (7), we obtain the following differential 
equation: 
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where 22222
zz kkk −=−= µεωγ . Substituting x=γρ in this 

equation we come to the Bessel equation 
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with the possible solutions in the form of Bessel, Hankel and 
modified Bessel functions. The general solutions for the fields Hϕ 
and Ez in layers 1-4 are written in Table 1.  
 

Table 1: General field solutions Ez and Hφ of the waveguide. 

 Fields (eigenfunctions) Eigenvalue and 
constant of propagation 
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In this table, the parameters µ0 and ε0 are respectively the 
magnetic permeability and the electric permittivity of the free 
space, ε1- ε3 the electric permittivity of the layers 1-3, εr1- εr3 the 
relative electric permittivity of the layers 1-3, and σ2 and σ3 the 
electric conductivity of the layers 2 and 3. The constants C2-C6 
can be expressed in terms of C1.  

2.2 Eigenvalue equation 

The eigenvalue equation to determine the parameters γ1- γ4 
presented in Table 1 is derived in this section. Note that the 
parameters γ1- γ4 are related to each other, for example 

2
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2 kk −+= γγ . Thus we can calculate only one of them, and the 

others will be automatically determined. The parameter chosen in 
our analysis is γ1. The procedure to obtain the eigenvalues 
equation is as follows.  

Using the general solutions presented in Table 1 and applying the 
boundary conditions of continuity of the fields Ez and Hφ at the 
surfaces ρ=a, ρ=b and ρ=c, the following set of equations is 
obtained 
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To simplify the notations, the following variables are defined 
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Replacing (18) in (12)-(17), we obtain the following system of 
linear equations: 
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It can be written compactly as [x]×[C]=[0]. The constants C2-C6 
can be expressed in terms of C1:  
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The system (19) possesses nontrivial solution if and only if the 
determinant of [x] is null, i.e. 

 

det[x]=0 (25)

 

This is the eigenvalue equation and the solution of it gives the 
eigenvalue γ1. The parameters γ2- γ4 expressed as functions of γ1 
are 
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In order to solve (25), the following normalizations of (26)-(28) 
are used: 
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where 
4000 kk == εµω , ωεσεε jrR /222 += , ωεσεε jrR /333 += , 

and εR4=1. Substituting (29)-(34) in (25), the resulting equation 
becomes a function of ξ. As the elements of the matrix [x] are 
complex, the solutions ξ are also complex numbers, with the real 
part ξr and the imaginary part ξi. With these notations, (25) is a 
system of two equations and two unknowns ξr and ξi. 
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The solutions of (35) are the points where the curves F1 and F2 are 
crossed. 



3. Numerical results and discussions 
 

To solve the system (35), a computer code in the software Matlab 
was developed. Using this program, eigenvalues γ1 of the modes 
TMz, the electromagnetic fields and currents can be calculated. 
The input data in this code are the electromagnetic and geometric 
parameters of the waveguide and frequency. 

In order to verify the developed code, the following two sections 
present the results of calculations for two waveguides with the 
known solutions: the circular metallic waveguide and the circular 
dielectric waveguide. They are particular cases of the four-layer 
structure. Some numerical results obtained for OPGW cables will 
be presented in Section 3.3.  

3.1 Circular metallic waveguide 

The simulation of this waveguide by the developed software can 
be done choosing the values of the radius b and c close to the 
radius a, and setting a perfect dielectric in the region 1 (Fig. 1b).  
One simulation was performed for this waveguide. The 
parameters of the waveguides used in the simulation are given in 
Table 2. 

Fig. 2 shows the F1 and F2 curves obtained for the simulation 
(Table 2), and the Fig. 3 shows the variation of Kz/K0 versus 2a/λ0  
(λ0 is the wavelength in free space) for two modes. 

 

Table 2: Input data of the simulation of the metallic waveguide. 

Region εr σ (S/m) Radius Relative 
permittivity 

1 10 0 a=0.5mm 1 

2 2 3.8×107 b=0.55mm 1 

3 3 3.8×107 c=0.6mm 1 

4 1 0 - 1 

 

 
 

Figure 2. Curves F1 and F2 obtained from simulation for 
the waveguide in Table 2. 

 

 
 

Figure 3. Dispersion curves obtained from simulation for 
the waveguide in Table 2. 

 

Fig. 2 shows that in the range 0<ξ<7, the eigenvalue solutions for 
the waveguide are ξ=0, 2.4057 and 5.5196. The second and the 
third eigenvalues are in concordance with the ideal circular 
metallic waveguide, but the value ξ=0 does not exist in the case of 
the ideal metallic waveguide. This eigenvalue appears due to the 
finite conductivity (σ=3.8×108) of the metal, which produces 
finite electric field inside the conductors for low and medium 
frequency. This means that there is no cutoff frequency for this 
mode TMz. In other words, in low frequencies only this mode 
propagates. In this work, this mode is called TMz

00. 

 

3.2 Circular dielectric waveguide 

The simulation for this waveguide was done setting the values of 
the radius b and c close to the radius a, and setting a perfect 
dielectric on the layers 1-4, but with different relative permittivity 
(Fig. 1). The parameters used for calculations are given in Table 
3. The obtained results are shown in Figs. 4-5. Again, our results 
coincide with the known ones. 

 

Table 3: Input data of the simulation for dielectric waveguide. 

Region εr σ (S/m) Radius Relative 
permittivity

1 20 0 a=0.5mm 1 

2 2 0 b=0.505mm 1 

3 3 0 c=0.51mm 1 

4 1 0 - 1 



 
 

Figure 4. Curves F1 and F2 obtained from simulation for 
the waveguide in Table 3. 

 

 
 

Figure 5. Dispersion curves obtained from simulation 1 
of the waveguide in Table 3. 

3.3 OPGW waveguide 

The simulation of this waveguide was made using a perfect 
dielectric in the region 1 (Fig. 1), and the regions 2 and 3 as 
nonideal conductors. The materials used in the waveguide are 
shown in Fig. 1. The electromagnetic and geometric parameters 
are given in the Table 4.  

Table 4: Input data for the simulation of the OPGW waveguide. 

Region εr σ (S/m) Radius Relative 
permittivity 

1 3.8 0 a=2.8mm 1 

2 1 3.96×107 b=4.1mm 1 

3 1 0.2×107 c=7.2mm 1 

4 1 0 - 1 

3.3.1 Eigenvalues and dispersion curves 
 
Fig. 6 shows the calculated curves F1 and F2. The crossing points 
give the eigenvalues ξ=0, 1.3535, and 2.4065. Again, the mode 
TMz

00 is present in this waveguide. Fig. 7 shows the dispersion 
curves obtained for the waveguide. Using this figure, it is possible 
to calculate the cutoff frequency corresponding to the eigenvalue 
ξ=1.3535. This value is 11.6 GHz, and the cutoff frequencies of 
the other superior modes are greater. For this reason, the only 
mode that propagates in low frequency is the TMz

00. The next 
sections present the analysis of this mode. 

 

 
 

Figure 6. Curves F1 and F2 obtained from simulation for 
the OPGW waveguide in Table 4. 

 

 
 

Figure 7. Dispersion curves obtained from the 
simulation of the OPGW waveguide in Table 4. 

 



3.3.2 Electromagnetic field distribution 
 
Fig. 8 and 9 show the variation of the electric field Ez versus 
radial coordinate ρ for the frequencies 1, 5, 10, 50, 125, and 200 
KHz. These curves show that when the frequency increases the 
electric field inside the waveguide diminishes. For the frequency 
200 KHz, the skin depth δ  is approximately 0.8mm.  

The distribution of the magnetic field Hφ in function of ρ for 
different frequencies is presented in Fig. 10 and 11. This field 
inside de waveguide is also reduced with increasing of the 
frequency. 

 

 
 

Figure 8. Module of electric field Ez versus radial 
coordinate. 

 

 
 

Figure 9. Module of electric field Ez in function of radial 
coordinate. 

 

 
 

Figure 10. Module of magnetic field Hφ in function of  
radial coordinate. 

 

 
 

Figure 11. Module of  magnetic field Hφ in function of  
radial coordinate. 

3.3.3 Current density distributions 
 
The variation of the magnitude of the current density Jz in 
function of radial coordinate ρ of the waveguide is given in Fig. 
12 and 13. These figures show the results calculated by our 
Matlab code and the commercial Finite Element Method Femlab 
software. The phase variation of this current density is presented 
in Fig. 14. 

These results show that in the frequency 1 KHz and below this 
value, the current distribution is approximately constant in the 
conductive regions (2-3). In the low frequencies (f<1 KHz), there 
is no skin effect. In the frequency 5 KHz the skin effect appears. 
In 200 KHz, the current density practically exists only in the 
surface of the external conductor (surface of the steel layer). Fig. 
14 shows that the phase of the current density Jz has a larger 
variation in function of the ρ  when the frequency increases. 



 
 

Figure 12. Module of  current density Jz versus radial 
coordinate. 

 

 
 

Figure 13. Module of current density Jz versus radial 
coordinate. 

 
 

Figure 14. Phase of current density Jz   versus radial 
coordinate. 

4. Conclusions 
 
This paper presents an analytical model based on the exact solution 
of Maxwell’s equations in frequency domain for analysis of multi-
conductor cables. We have considered OPGW cable as a circular 
waveguide with four layers: dielectric, aluminum, steel and air.   
The main results of our work are as follows. We developed an 
analytical waveguide model and computational program which 
allow one to calculate the electromagnetic field and current 
distributions in cables consisting of azimuthally uniform layers 
with nonideal materials, i.e. with metals with finite conductivity 
and dielectrics with losses. This model allows one, in particular to 
investigate the skin effect and the electromagnetic fields inside 
and outside of the cables. 
The algorithm is verified by comparing with two known exact 
solutions of waveguide problems and with the solutions for 
current density distribution obtained by Finite Element Method 
using the commercial program Femlab. 
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