
 

 

 
Abstract — Despite the advances and improvements in the Digital 
Subscriber Line (DSL) technology, noise is still the main 
impairment. In special, far-end crosstalk, Radio Frequency 
Interference (RFI) and Impulsive Noise (IN) are of greatest 
concern and study. In DSL world, there are many noise 
mitigation techniques, but to know the impairment as a priori 
knowledge is a step necessary to apply the appropriate technique. 
In this paper we propose a new methodology for noise 
identification on real-time. Computational Intelligence (CI) 
algorithms are used in order to classify in real time the absence of 
noise or the predominance of IN, crosstalk or RFI. The 
algorithms are applied to a database composed by management 
information base (MIB) metrics. In order to ensure the database 
diversity, several DSL topologies using real cables were created 
and evaluated. In order to choose the best CI algorithm, a 
benchmarking was performed comparing the results achieved by 
naive Bayes, Bayesian belief networks and artificial neural 
networks based on backpropagation and on Radial Basis 
Function (RBF). The results demonstrate the potential use of CI 
for noise identification in DSL networks through MIB metrics 
and the most difficult noise to be identified is pointed. Tests 
indicate the RBF algorithm achieving the best result with 99.6% 
of accuracy. 
 

Index Terms— DSL, data mining, noise identification, real 
time systems, monitoring, network measurement, backhaul. 

I.  INTRODUCTION 
DIGITAL Subscriber Line (DSL) technologies employ 
metallic cables commonly used in telephone systems for high-
speed data transmission. There are today more than 1.3 billion 
copper phone line connections, which are important in the 
modern world of telecommunications, a growing 1/3 of them 
are now using DSL [1]. Despite the increasing use of fiber 
optics and architectures such as fiber-to-the-cabinet and fiber-
to-the-home, DSL technologies for backhaul data transmission 
are still advantageous in terms of cost in last mile solutions, 
i.e., femtocells, domestic and/or corporate users. 

The most recent DSL technologies under operation, Very-
high-bit-rate DSL (VDSL) and VDSL2 operate in short links 
on the order of hundreds of meters, i.e., up to 300 meters 
providing maximum communication speed of 100 mbps. In 
general this communication is between the distribution cabinet 
and the user equipment or femtocell modems. Although the 
progress in the DSL technologies has been increasing, the 
noise impact is still the main concern. 

 

 
There are several noises in communications, but in DSL: 

far-end crosstalk (crosstalk), Radio Frequency Interference 
(RFI) and Impulsive Noise (IN) are of greatest concerns of the 
study. 

In an environment where several active DSL lines are in the 
same binder, like in residential deployments or backhauling 
purposes, it is crosstalk noise that severely restricts the system 
performance. Moreover, among many types of noise, the 
crosstalk noise is more predominant in DSL networks [2]. 
Besides, it is the major performance bottleneck for the large 
deployment number of DSL lines trying to achieve high-speed 
data rate [3], causing problems of signal loss, and decreasing 
the channel capacity. 
 In industrial areas and residential premises, IN becomes a 
relevant restricting factor. Furthermore, IN is the very 
complex and hard to be characterized; and, it also causes 
damages, such as loss of connection, decrease of link range 
and loss of service quality.  
 Finally, RFI is mostly caused by radio broadcast in low 
frequency, as well as interference in the hams range may cause 
non-linear distortions. 

The bibliography related to noise identification generally 
focus on crosstalk. Perhaps the most natural way to identify 
crosstalk is from its perceptible impact on the Signal-to-Noise 
ratio (SNR) [4-5], which can be determined by retrieving 
information from customer premises equipment (CPE). Some 
methods employ the classical least-mean approach to estimate 
the dominant crosstalk users [6] or the crosstalk sources in a 
binder. Other methods provide real-time exploiting of 
signaling exchange on the training phase of a recently 
activated DSL line to determine the crosstalk function 
between that line and an existing operational one [5]. 
Computational Intelligence (CI) algorithms based on sampling 
and clustering have been proposed in order to estimate IN, as a 
step for cancelling [7-8]. 

Noise identification in DSL system has attracted a lot of 
attention due the significant benefits of having an accurate 
description from network limitation factors. At this time, it is 
noticed a lack of material about real-time noise monitoring in 
DSL networks. Following that trend, this paper proposes a 
new strategy for real-time noise monitoring (three different 
noises) in DSL networks. CI algorithms were applied in order 
to identify the predominant noise in the network.  

This paper is structured as following: section II presents 
the DSL topologies considered; section III shows the 
Knowledge Discovery in Database (KDD) steps applied in this 
paper; section IV presents the results obtained with the 
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analyzed algorithms; and the last section presents the results 
obtained in this study.  

II.  TOPOLOGY ARCHITECTURES 
Figure 1 shows the setup used during the network 

measurements. The information generated from the 
measurements was taken by the MIB, which are a set of data 
returned by the modem and DSL Access Multiplexer 
(DSLAM). The MIB metrics acquire the necessary 
information for the network management. Such metrics are 
managed by the Simple Network Management Protocol 
(SNMP), which is an application layer protocol responsible for 
the network management, allowing its performance evaluation 
and specific settings modification. 

During the DSL measurements phase, MIB metrics 
(attributes) were collected every 15 seconds, resulting in 
approximately 11 hours of measurements. The database was 
built from measurements made of different network topologies 
varying the noise power in order to ensure the diversity in 
data. 

The network measurements were done using copper wires, 
which are represented by the dotted lines. The continuous 
lines are Ethernet cables used to transmit the data from the 
traffic generator/analyzer (TGA) to the DSLAM or central 
office and from the DSL modem or customer premises 
equipment to TGA. TGA is hardware that generates triple-play 
broadband traffic. 

The dashed lines connecting Ethernet cables from the 
DSLAM to Switch are used for transmitting data under test 
and managing the test itself. PC1 and PC2 are connected 
computers that manage the tests. 

The topologies were created in order to cover the short 
representative links of a VDSL2 network [9], topologies with 
0.4 mm and 0.5 mm gauges and 50, 150 and 450 meters 
lengths were used.  

Table I summarizes the twenty-four topologies created. Six 
are reserved for measurements without noise injection, 
whereas the other eighteen uses noise injection to simulate 
DSL networks under disturbances influence. 

 
TABLE I 

REPRESENTATION OF TOPOLOGIES AND NOISES. 
 

Loop Noise Type Length (meters) 

Loop 1 

(0.4 mm) 

Crosstalk 

50, 150 and 450 

IN 

RFI 

No Noise 

Loop 2 

(0.5 mm) 

Crosstalk 

IN 

RFI 

No Noise 

 
In order to build a database for noise identification task, 

predefined noise masks from International Telecommunication 
Union (ITU) [10] recommendations were used. The noises 
were inserted in the DSLAM side using the noise generator 
(NG) represented in Figure 1. 

The NG calculates the noise sample of the noise profiles 
that are available on the generator. A noise profile injected by 
NG has the power spectral density (PSD) description of 
crosstalk, IN and RFI noise. 

In order to guarantee database diversity the noise power 
was varied. Firstly, IN was injected with 0 dBm. Secondly, 
RFI with -54 and -44 dBm were injected separately. Third, 
Crosstalk was injected and varied in following powers -25.3,   
-23.4, -22.4, -21.6, -21.1, -20.6, -20.2,   -19.8, -19.5, until -
19.3 dBm. Finally, it was measured an experiment without 
noise injection by NG, named No Noise.  

 
Fig. 1. Topology and devices used on this work.	
  

III.  KDD APPLICATION 
Figure 2 presents the steps of the KDD [11] process 

applied to this study. It ranges from the database creation to 
the extraction of knowledge by the application of a CI or 
statistical technique in the data mining [12] process.  

In the step of the database building, measurements without 
noise injection were made, as well as with crosstalk, impulsive 
and RFI noise injection.  

The metrics selection step was done to withdraw 
incomplete data from database. A correlation analysis was 
applied in the preprocessing step in order to remove registers 
and attributes correlated. Finally, the reduced database was 
normalized in the transformation step. After the initial KDD 
steps, only the following attributes were used as input on the 
four algorithms: 

• adslAtucCurrSnrMgn and adslAturCurrSnrMgn are the 
noise margin as seen by the ATU-Central (ADSL Termination 
Unit-Central) and ATU-Remote, respectively; 

• adslAturCurrOutputPwr is the total output power 
measured and transmitted by the ATU-Remote. 

• adslAtucChanInterleaveDelay defines the mapping 
(relative spacing) between subsequent input bytes at the 
interleave input and their placement in the bit stream at the 
interleave output. 

• adslAtucChanPerfCurr1DayUncorrectBlks is the count of 
all blocks received with uncorrectable errors on the channel 
during the current day; 

• adslAtucPerfCurr1DayESs is the count of errored 
seconds during the current day; 
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• adslAtucChanPerfCurr1DayCorrectedBlks is the count of 
all blocks received with errors that were corrected on the 
channel during the current day; 

• adslAtucPerfXCurr1DayEcs.and.adslAturPerfXCurr1Day
Ecs are the error count during the time in seconds as seen by 
the ATU-Central and ATU-Remote, respectively; 

• adslAtucPerfCurr1DayUasL.and.adslAturPerfCurr1DayU
asL are the number of seconds which lines are unavailable as 
seen by the ATU-Central and ATU-Remote, respectively; 

• adslAturPerfCurr1DayLprs is the count of the number of 
seconds when there was loss of power during the current day; 

• adslAtucPerfCurr1DayInits is the count of the line 
initialization attempts in the day. 

 
Fig. 2. Flowchart depicting the KDD process extended to our application. 

 
In selection and preprocessing steps 40, 77, 83 and 40 

registers were discharged from No Noise, Crosstalk, IN and 
RFI respectively. This reduction resulted in a database of 2654 
samples, being 244, 1933, 117 and 360 from No Noise, 
Crosstalk, IN and RFI, respectively. 

Finally, the data mining algorithms were applied and the 
results interpretations were conducted during the step of result 
analysis. 

Four classification algorithms were tested: Naïve Bayes 
(NB), Bayesian Networks (BN), Artificial Neural Networks 
(ANN) based on Radial Basis Functions (RBF) and 
Backpropagation (BP) [13-14] for benchmarking purposes. 

IV.  RESULTS 
In this section the best results are presented and discussed. 

The result analysis in Table II was done in four phases. The 
first analysis regards the relative performance of the 
algorithms for detecting the presence of noise. The second 
analysis regards weighted average of accuracy among the kind 
of noises present on the experiments. The third analysis 
presents the accuracy percentage during the best simulation of 
each algorithm. The final analysis presents the most difficult 
noise to be identified. 

The confusion matrix (Table II) shows the classification 
accuracy of the algorithms used. The left columns show the 
algorithms and the desired output (Actual Noise 
Environment). The rows represent the output after tests from 
each algorithm. 

For detection of noise purposes, the Table II can be 
simplified as shown in Table III. In Table III crosstalk, IN and 
RFI are considered as Noise and No Noise is kept. The main 
diagonal indicates the correct detection of the noise 
environment (true positive and true negative) while the 

associated secondary diagonal indicates the misdetection 
(false positive and false negative).  

  
TABLE II 

CONFUSION MATRIX OF BP, RBF, BN AND NB. 
 

Algorithms Actual Noise 
Environment 

Algorithm's output 
No 

Noise Crosstalk  IN RFI 

BP 

No Noise 244 0 0 0 

Crosstalk 1 1932 0 0 

IN 0 7 110 0 

RFI 6 0 0 354 

RBF 

No Noise 244 0 0 0 

Crosstalk 1 1931 1 0 

IN 0 0 117 0 

RFI 8 0 0 352 

BN 

No Noise 244 0 0 0 

Crosstalk 31 1902 0 0 

IN 0 0 117 0 

RFI 2 0 0 358 

NB 

No Noise 244 0 0 0 

Crosstalk 1 1901 1 30 

IN 0 0 117 0 

RFI 9 30 0 321 
 
Regarding the noise detection error (false negative), all 

algorithms performed well. However, BP, RBF and NB 
achieved the false negative rate lower than 0.5% (0.26 %, 0.33 
% and 0.37%, respectively) while BN performed relatively 
worse – i.e., 1.24%. From Table III, it is also evident that 
algorithms do not have a conservative behavior since none of 
“No Noise” data was wrongly assigned as a noisy environment 
(false positive 0% or true negative 100 %). 

In summary, RBF, BP and NB were the algorithms that 
performed the best noise detection. 

Regarding True Positives (TP) and False Positive (FP) 
Rate, the results for each algorithm are presented in Table IV. 
It is important to notice that in order to calculate the mean 
detection accuracy, the number of samples must be 
considered, i.e., a weighted computation must be done. 
Crosstalk was considered the more relevant class due the 
quantity of samples in the database while IN was the opposite. 

RBF and BP algorithms achieved the best TP Rate, with 
very similar rates. For the studied case the difference is not 
significant to choose BP over RBF. 

RBF algorithm achieved the best TP Rate and the minor FP 
Rate being the best algorithm comparing with the other three. 
BP achieved a result close to RBF, but worse. However, as 
shown in Table III, BP classified seven noise samples as No 
Noise, when RBF classified nine. For the studied case the 
difference is not significant to choose BP over RBF. NB and 
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BN did not achieve better accuracy when compared with BP 
and RBF. 

 
TABLE III 

 CONFUSION MATRIX BINARY OF BP, RBF, BN AND NB. 
 

Algorithm Actual noise 
environment 

Algorithm’s 
classification 

No Noise Noise 

BP 
No noise 244 0 

Noise 7 2403 

RBF 
No noise 244 0 

Noise 9 2401 

BN 
No noise 244 0 

Noise 33 2077 

NB 
No noise 244 0 

Noise 10 2400 
 
When benchmarking the results, all algorithms achieved 

accuracy rates greater than 97%. However, among the four 
simulated algorithms, the RBF and BP are highlighted with 
accuracy of 99.6% and 99.4%, respectively. On the other 
hand, NB and BN achieved least expressive results, with 
97.32% e 98.75% only. In summary, RBF and BP were the 
algorithms that performed the best noise identification. 

 
TABLE IV 

WEIGHTED AVERAGE OF ACCURACY BY THE TP RATE AND FP RATE. 
 

Algorithms Weighted Average of Accuracy 

TP Rate FP Rate 
BP 99.5% 0.7% 

RBF 99.6% 0 

BN 98.8% 0.1% 

NB 97.3% 3.3% 
 
Analyzing among the noises, all No Noise samples were 

correctly classified using the algorithms. Crosstalk 
classification achieved best results with neural network and 
NB algorithms. Only BP misclassified IN samples. Finally, 
due its low power, RFI samples were mistaken with No Noise 
in all algorithms. 

Among the four desired output No Noise was well 
classified with 0% of error, while RFI, IN and Crosstalk 
achieved an error average by all algorithms of approximately 
3.81, 1.49 and 0.46 percent, respectively.  

V.  CONCLUSION 
Noise identification is a necessary step in order to choose 

the most appropriate technique to mitigate noise.  
It was demonstrated that is possible to monitor and to 

identify real-time noise using information from the application 
layer provided by MIB metrics. Also, it was shown that is 
possible to have a generalized solution based on CI algorithm 
to identify noise independently of topology. 

Through KDD steps were possible to decrease the error 
rate and improve the classification results.  

The methodology does not interfere in the data 
transmission services deployment (as it uses information 
strictly measured by the central office and residential modem). 
In addition, the methodology is not dependent on the physical 
modeling of communication channel. It dependents only on 
information obtained in the application layer. 

The results demonstrate the high potential of CI algorithms 
for monitoring purposes. The best technique, the RBF, 
achieved 99.6% of accuracy. RBF produced the best results in 
all the comparisons. 

The RFI showed as the most difficult type of noise to 
identify by CI algorithms due to its low power level. The RFI 
is the most likely to be confused with a measure without noise 
injection due to its low impact in the network. 

The information about the predominant noise can be used 
not only for its estimation and mitigation, but also for a better 
management and development of new strategies to improve 
the DSL deployment. This strategy can be expanded to 
different networks that make use of MIB metrics. 
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