
A Wireless Sensor Network for Monitoring the
Sound of Animals in Tropical Forests

Ilan S. Correa, Lilian C. Freitas, João Crisóstomo Costa and Aldebaro Klautau
Sensors and Embedded Systems Laboratory (LASSE) - Federal University of Pará (UFPa)

CP 8619 - Rua Augusto Correa 01 - CEP 66075-110 - Bélem - Pará - Brazil.
Web: www.lasse.ufpa.br. E-mails: {ilan, liliancf, jwey, aldebaro}@ufpa.br

Abstract—Wireless sensor networks has been growing and
brings with it many alternatives which facilitates and turn
possible some tasks, like monitoring places which access is not so
easy, it is possible joining small sensors with wireless technology.
The sensors to this tasks should not change the behavior of the
object being observed, so it must be small which implies some
hardware limitations. This work presents a implementation of
wireless sensor network application for monitoring sounds of
animals in tropical forest. It uses a limited radio and CPU and
a little memory, and still have to manage these limitations and
at same time enables the capture, storage and transmission of
sounds, with the least possible delay. It was used a compression
algorithm and presented an analysis that considers the radio and
CPU usage, and the quality of the sound after decompression.

1. INTRODUCTION

The analysis of sounds produced by animals, known as
bioacoustics [1], enables identifying and monitoring species,
estimates biodiversity of certain place, besides facilitating its
study.

The great challenge on monitoring sounds of animals
in forest environments, is the difficulty of access, because
the forests are extremely closed and, many times, crossed
by rivers (as the Amazon rainforest). These characteristics
make it difficult for researchers have access. Furthermore, the
monitoring of animal sounds should occur without interference
on their habits.

Thereby, the use of Wireless Sensor Network (WSN) shown
very promising, because it do not need a infrastructure to work
(ad hoc network), do not needs people to perform sounds
capturing and moreover do not interfere the natural habits of
interest animal.

Howsoever, sound monitoring application requires high
bandwidth, impose hard restrictions on delay and requires
coordination between sensor nodes. These restrictions need
efficient algorithms implemented on WSN, because such
networks are usually composed of sensor nodes with little
energy autonomy, with 8 or 16 bits microcontroller and its
radio has low transmission rates.

The goal of this work is to describe the implementation of
a WSN for monitoring sounds of animals in forests. A general
purpose compression algorithm called DPCM (differential
pulse code modulation) [2] was employed to allow transmitting
more information on the radio link. This work is part of a
project that aims at constructing a “intellectual property” (IP)
core called ListenU within the NAMITEC activities [3]. This

work is important in this context because it allows to test these
algorithms in practice, using the testbed that is described in
the sequel.

The remainder of this paper is organized as follows: the
section 2 described the sensor platform used, the section 3
describes in details how the application works, the section 4
shows the result and the section 5 presents the conclusions of
the work.

2. PLATFORM AND APPLICATIONS

2.1. Sensor Nodes
In this work was used the sensor nodes Micaz of Crossbow

Technology Inc. [4] equipped with processor ATMega128L [5]
of 7.3728 MHz with 128 kB of program memory (flash), 4 kB
of data memory (sram). This platform still has 512 kB of
external memory (flash) for reading of measurements of sensor
nodes and CC2420 [6] radio module running at 2400 MHz
capable to offer a bandwidth total of 250 kbps.

An expansion slot accommodates a variety of sensing cards
such as light, temperature, magnetic field, sound, and so on.
The Micaz motes execute the TinyOS operating system [7] that
has a programming model based on components, provided by
the network embedded systems C (nesC) language [8], [9].

In this work was used the MTS300 [4] sensorboard
connected on expansion slot. The microphone provided by this
sensorboard has a 10 bits A/D converter, and was used a 16
bit variable to avoid overflow.

2.2. Software ListenU
As mentioned, this work is part of a project that aims at

building an IP core called ListenU. This IP core will be written
in System C and then validated. But for testing the software
with Micaz nodes, the software will be first written in nesC
and Java, as described in the sequel.

The ListenU application developed on this work allows
capturing sound samples on sensor network and delivers
packets with samples to the computer. It was divided into three
modules:

• Sensor node module: this module is responsible
capturing the sounds of animals, compress the samples,
packing and transmitting samples to Sink module. This
module was developed using nesC Language.

• Sink module: this module is a bridge between the WSN
and the computer. Its works forwarding received signals

by serial port to the WSN and received packets from
WSN to the computer. This module was developed using
nesC Language.

• Interface module: it was developed in Java using
the TinyOS Java API, and was based on an example
application that comes with TinyOS called Antitheft. Is
important to highlight that this module also uses TinyOS
API.

The Figure 1 shows the modules distribuition on WSN, and
diagram 2 illustrates communication flow.

Fig. 1. The architecture of the application.

3. SYSTEM DESIGN

3.1. Data Acquisition

The ListenU application was designed to sample every time
that user sends signal via Interface module, to turn possible
the sampling operation, the Sensor node module maintains
a buffer in RAM, that temporally stores all samples, before
being compressed and transmitted. Sampling frequency and
the buffer’s size are pre-defined on a header file.

Each time the signal arrives on Sensor node module, the
buffer is filled, when this is done TinyOS sinalizes, both
operations uses ReadStream interface [10].

Fig. 2. The operation diagram of the system.

3.2. Communication Patterns
Two levels of communications were implemented. The

computer-Sink serial communication using RS-232, and
Sink-Sensor and Sensor-Sensor using multihop wireless
communications. Figure 2 shows the communication flow.

The serial communication works on Sink module and in
Interface module, using 57.6 kbps transmission rate, which is
the highest transmission rate supported by Micaz. The serial
communication on Sink uses AMSend and Receive interfaces
from TinyOS.

In serial communication a latter emphasized factor is the
difference between radio and serial transmission rate (250 kbps
and 57.6 kbps respectively), this may causes packet loss.
Therefore a queue was added on Sink module in forwarding
operation, and each received packet should be queued before
to be sent to computer.

The second communication pattern was wireless with
multihop, which allows a node transmits a packet using
multiple stage until reaches the destination.

Sink module forwards a start read signal using the
DisseminationUpdate interface [11]. Thus the signal is
delivered to each node on WSN by DisseminationValue
interface, it reports that a signal has arrived. This operation
runs with the Trickle algorithm [11], [12], which ensures that
all reachable node receive the signal. Indeed the signal is a
shared variable, provided by the algorithm where each node
can get and set its value, but here this resource only signals,
therefore only sink can set.

To collect the samples with Sink module, was used Receive
interface with CollectionC component [13], it provides ways
to collect all packets from the network using multihop. This
component uses CTP (collection tree protocol) protocol [14],
where a node is elected root of a collection tree (Sink module)
and every transmitted packet should reaches the root. If a node
cannot reach the root with a single jump, CTP uses multiples
jumps (multihop) to ensure that all samples reaches the root.

A Sensor node which has done sampling, should send
its samples to collect more samples, but if several
Sensor nodes simultaneously transmits may occur network
congestion. Any congestion should be avoided, thus were used
DisseminationUpdate and DisseminationValue interfaces (this
time using the shared variable).

Before sending a Sensor node first checks if it can sends,
using DisseminationValue, that returns a pointer to a bool
variable, it represents the transmission operation status (busy
or free). Thus Sensor node knows if any node is sending,
then it changes the variable’s value using DisseminationValue
interface that also reports all Sensor nodes. Now it has
exclusive access to transmit its samples, thus Sensor node do it
quietly. When sending is over the node change again variable’s
value to report that it finished the operation.

3.3. DPCM Implementation
In the WSN Sensor nodes samples and communicates with

Sink module always it completes sampling, this operation
produces a great number of data, and its transmission can

take much time. Thereby increasing the number of transmitted
samples per packet became necessary, and was implemented
the compression algorithm DPCM (Differential Pulse Code
Modulation) [2] on Sensor node modules.

The DPCM algorithm increases the volume of data per
packet, this is possible because is sent the difference of sample
and its prediction instead the sample. Insofar the sample
consumes two bytes and the algorithm produces a difference
that consumes one byte. The nesC code below shows the
DPCM’s implementation.

f o r (i =0 ; i<N SAMPLES ; i +=PACKET SIZE) {
s rec n menos 2 = 0 ;

/ / r e c o n s t r u c t e d s i g n a l s
s rec n menos 1 = 0 ;

5 f o r (j =0 ; j<PACKET SIZE ; j ++){
x ch= (s rec n menos 2 + s rec n menos 1) / 2 ;
/ / p r e d i c t i o n o f sample
d = b [j + i]−x ch ; / / d = t h e d i f f e r e n c e
/ / b = b u f f e r o f sample

10 / / Q u a n t i z a t i o n b l o c k
i f (d < −128)

dq=−128; / / dq = q u a n t i z e d d i f f e r e n c e
e l s e i f (d > 127)

dq =127;
15 e l s e

dq=d ;
s rec n menos 2 = s rec n menos 1 ;
s rec n menos 1 = dq+x ch ;
s−>sample [j] = dq ; }} / / p a c k i n g t h e d i f f e r e n c e s

The first step of this algorithm is to calculate a prediction
of a sample, through average of the prediction of two previous
samples. Then is calculated the difference of between a sample
and its prediction. This difference is quantized in the range
from -128 to 127 (represented by 8 bits). The quantized
difference is transmitted to the Sink module.

4. RESULTS

This section presents an analysis made over the two
implementation of the ListenU application. The first
implementation does not use compression and the second uses
the DPCM algorithm. The analysis considered the radio usage,
which is presented in Table I.

TABLE I
RADIO USAGE: THE SIMULATION CONSIDERED THE TRANSMISSION OF

1000 SAMPLES.

Transmission Power Assembly
time consumption instructions

Original 0.8 s 33.408 mJ 61,957
Compressed 0.4 s 16.704 mJ 61,881

Table I shows some data acquired on each version of
ListenU, these data were acquired based on estimation, that
considers capacity and consumption values obtained from
CC2420 datasheet [6]. It shows radio data considering raw
samples (no compression) and DCPM compressed samples. It
is observable that the implementation of algorithm introduces
few instructions, this way the algorithm increases minimally
the computational complexity.

Figure 3 shows another important comparison, it indicates
slight difference between them. Tests were done with real
signal, to assess this difference and appeared a little distortion
in compressed version, nevertheless it does not affects the
sound understanding.

Fig. 3. A signal and its version after compression and decompression.

5. CONCLUSIONS

This work presented a complete application for monitoring,
from the sampling module up to the computer interface that
manipulates the received data. Some challenges had to be
overcome like hardware limitations, the volume of produced
data and the difficulty to testing the application especially
when using Micaz nodes.

To bypass these limitations, a especial attention was given to
the DPCM algorithm, which allowed energy and time saving
with a small increase in computational complexity. Also the
limited range achieved by the radio module was circumvented
by the adoption of a multihop topology, which allows to
obtain data from nodes far from the sink node. The overall
performance of the system depends on both the coding (in
this case DPCM) and multihop topology. In spite of focusing
in sound, the developed system can be adapted to other uses.

REFERENCES

[1] Thomas Rossing, Springer Handbook of Acoustics, Springer, 1 edition,
2007.

[2] M. D. Paez and T. H. Glisson, “Minimum mean-squared-error
quantization in speech pcm and dpcm systems,” IEEE Trans. on
Communications, vol. 20, pp. 225–30, 4 1972.

[3] “Instituto Nacional de Ciência e Tecnologia de Sistemas Micro e
Nanoeletrônicos - NAMITEC,” http://namitec.cti.gov.br.

[4] “Crossbow technology inc.,” http://www.xbow.com/.
[5] “Atmel inc.,” http://www.atmel.com/.
[6] “Chipcon inc.,” http://www.chipcon.com/.
[7] “Tinyos,” http://www.tinyos.net/.
[8] David Culler Eric Brewer David Gay, Philip Levis, nesC 1.1 Language

Reference Manual, http://nescc.sourceforge.net/papers/nesc-ref.pdf.
[9] UC Berkeley WEBS Project, “nesc: A programming language for deeply

networked systems,” Accessed in 2010., http://nescc.sourceforge.net/.
[10] TinyOS, “Tinyos source code documentation,” http://www.tinyos.net/

tinyos-2.1.0/doc/nesdoc/micaz.
[11] “Dissemination of small values,” http://www.tinyos.net/tinyos-2.1.0/doc/

html/tep118.html.
[12] Neil Patel David Culler Philip Levis and Scott Shenker, “Trickle:

A self-regulating algorithm for code maintenance and propagation in
wireless sensor networks,” In Proceedings of the First USENIX/ACM
Symposium on Networked Systems Design and Implementation, 2004.

[13] “Collection,” http://www.tinyos.net/tinyos-2.1.0/doc/html/tep119.html.
[14] “Collection tree protocol,” http://www.tinyos.net/tinyos-2.1.0/doc/html/

tep123.html.

http://namitec.cti.gov.br
http://www.xbow.com/
http://www.atmel.com/
http://www.chipcon.com/
http://www.tinyos.net/
http://nescc.sourceforge.net/papers/nesc-ref.pdf
http://nescc.sourceforge.net/
http://www.tinyos.net/tinyos-2.1.0/doc/nesdoc/micaz
http://www.tinyos.net/tinyos-2.1.0/doc/nesdoc/micaz
http://www.tinyos.net/tinyos-2.1.0/doc/html/tep118.html
http://www.tinyos.net/tinyos-2.1.0/doc/html/tep118.html
http://www.tinyos.net/tinyos-2.1.0/doc/html/tep119.html
http://www.tinyos.net/tinyos-2.1.0/doc/html/tep123.html
http://www.tinyos.net/tinyos-2.1.0/doc/html/tep123.html

	Introduction
	Platform and Applications
	Sensor Nodes
	Software ListenU

	System Design
	Data Acquisition
	Communication Patterns
	DPCM Implementation

	Results
	Conclusions
	References

