
FBG Optimization Using Spline Encoded
Evolutionary Strategy
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Abstract—This paper presents a chromosome encoding tech-
nique to be applied with Evolution Strategies (ES) or other pop-
ulation based optimization algorithms. The proposed encoding
scheme uses spline approximations to build softened and ample
refractive index profiles from few encoded parameters. This
approach results in a dimensionality reduction and the respect
of important restrictions associated to the FBG manufacture.
Simulations are shown where an ES using the spline encoding
is able to converge faster and produce more interesting filters,
when compared with conventional encoding schemes.

I. INTRODUCTION

Fibre Bragg Gratings (FBGs) are flexible components. By
adjusting the parameters that describes their refractive index
profile, it is possible to obtain filters showing reflectance spec-
trum adapted to almost any type of application. Unfortunately
this procedure (FBG synthesis) is not a trivial problem and
several techniques have been proposed with some degree of
success.

For example, if only weak gratings are considered, the
refractive index profile can be obtained from the Fourier
Transform of the reflection coefficient. This was the approach
used by Winick and Roman [1] with interesting but inaccurate
results. In the other hand, other techniques like these based
on Layer Peeling (LP) [2][3] are capable of very accurate
solutions in terms of reflectance spectrum, but have as side
effect the generation of large and complex refractive index
profiles that are difficult to built using Ultra Violet (UV) mask
manufacture techniques [4]. In order to attend all restrictions
associated to the FBG manufacture, Askanes et al [5] pro-
posed an hybrid method that combines classical optimization
techniques and the LP algorithm.

Other design alternatives are Evolutionary Algorithms (EA).
Genetic Algorithm (GA) [6] and Particle Swarm Optimization
(PSO) [7] allow to achieve satisfactory results even under
heavy restrictions due to the manufacture process. For ex-
ample, in [8], a pioneer article about the use of GAs for
FBG synthesis, feasible Wavelength Division Multiplexing
(WDM) filters with negligible dispersion are obtained. In
[9], the FBG synthesis is performed using the Covariance
Matrix Adapted Evolution Strategy (CMAES) with relative
great success. Similar results are achieved in [10] using PSO.
In [11], a GA is applied in the synthesis of Triangular FBGs

(TFBGs). In [12], the TFBG synthesis is performed again, but
using the CMAES.

Although literature shows that meta-heuristics can be used
to synthesize FBGs, they suffer because of the high number
of parameters needed to represent a FBG properly. Using
the modelling based on uniform sections presented in [13],
an apodized FBG one centimetre long can be represented
by about one hundred uniform sections, each one modelled
by four parameters. Even considering a single parameter by
section, about one hundred in total must be used to represent
the entire FBG. This high dimensionality can make the meta-
heuristic optimization scheme not practical. Frequently in the
literature a FBG is designed with a very reduced number
of uniform sections. For example, in [10], only 20 sections
are considered. The use of a reduced number of sections can
generate mismatches large enough to work like mirrors inside
the FBG, which can create several cavities along the grating.
In this case the reflectance spectrum can result noisy and full
of undesired lobes, affecting the meta-heuristic convergence.

Therefore, it is interesting to produce softened refractive in-
dex profiles and find a way to do that using as few parameters
as possible. Fortunately, according to the information theory,
softened signal formats shall carry naturally less information
and, consequently, it is possible to use less parameters to
encode them. This article explores the use of spline approxima-
tions to create softened profiles from few points stored in ES
individuals. Section II presents the basic FBG model. Section
III presents the usual way to encode a FBG and the proposed
spline encodings. Section IV presents the ES algorithm. Sec-
tion V compares the performance of several encoding schemes
through computer simulations. Finally, Section VI presents the
conclusions.

II. FBG MODEL

Following the matrix formulation from [13], the refractive
index profile is given in function of the axial distance z:

n(z) = neff + ν cos

(
4πneff

λB

)
, (1)

where neff is the effective refractive index, ν the modulation
parameter and λB is Bragg wavelength.



Using the coupled mode theory, it is possible to represent
an uniform section of length ∆z as a 2x2 matrix F:[

R∆z

S∆z

]
= F ×

[
R0

S0

]
, (2)

where R0 and S0 represent respectively the field amplitudes
of the propagating and back propagating modes at z = 0.
R∆z and S∆z represent respectively the field amplitudes of
the propagating and of the back propagating modes at z = ∆z.
F is calculated in function of δn, ν, λB , ∆z and neff .

A non uniform Bragg Grating, i.e., an apodized grating,
can be modelled as a sequence of M uniform short gratings
(uniform sections). Let Fk be the transfer matrix of the kth
section, where k = 0 for the first section at z = 0. The total
transfer matrix for the apodized grating is given by multiplying
all its M section matrices:

FT = FM ×FM−1 . . .×Fk+1×Fk×Fk−1 . . .×F1×F0. (3)

Now (2) can be rewritten in function of the total matrix FT :

[
RL

SL

]
= FT ×

[
R0

S0

]
;FT =

[
FT 11 FT 12

FT 21 FT 22

]
. (4)

Where RL and SL represent respectively the field amplitudes
of the propagating and of the back propagating modes at z =
L. L is the total FBG length given by L =

∑M−1
k=0 δzk.

The reflectance is given in function of F elements by:

R =

∣∣∣∣−FT 21

FT 22

∣∣∣∣2 . (5)

The apodized FBG can be represented in a vector
form like V = {δn 0,ν0,λB 0,∆z0, ..., δnk,νk,λB k,∆zk, ...,
δnM−1,νM−1,λBM−1,∆zM−1}, which is also a natural way
to represent a FBG as an individual in meta-heuristics. In
practical terms, not all parameters should be present in the
vector because they could be constant or known for the entire
grating. For example, the representation in the format {ν0, ν1,
..., νk, ..., νM−1} was essentially the way chosen in [12] to
represent individuals in the CMAES.

III. ENCODING STRATEGIES

Let us consider to be enough to represent ES individuals
using V = {ν0, ν1, ..., νk, ..., νM−1}. This encoding scheme
will be referred here as direct encoding (DE), where the
number of search space dimensions is equal to M , the same
number of uniform sections. Satisfactory FBG representations
make use of at least 20 sections for a centimetre long grating
[10].

An interesting way to reduce the number of dimensions is
through some sort of indirect encoding, where the individuals
store few parameters in a vector form like X = {x0, x1, ...,
xj , ..., xm−1} with m < M . Any νk can be calculated from
X using linear interpolation:

νk = xj + (xj+1 − xj)(dj − j), (6)

where

dj = m× k/(M − 1) (7)

and j = trunc(dj). Function trunc() returns the integer part
of an argument. The encoding scheme given by (6) will be
referred as linear encoding or LE.

Another approach is to replace the linear interpolation by a
spline approximation. This paper explores quadratic and cubic
splines. For the quadratic spline encoding (QSE), νk can be
calculated from X as follows:

νk =


(t−1)[(xj+xj−1)(t−1)+4xjt]+(xj+xj+1)t

2

2 , 0<j<m−1

xj + (xj+1 − xj)[dj − trunc(dj)], otherwise
(8)

where dj is given by (7), j = round(dj) and t = dj − j +
0.5. The function round returns the nearest integer of the
argument.

For the cubic spline encoding (CSE), the relationship be-
tween νk and X is given by:

νk =


A(1−t)3+6t(1−t)[B(1−t)+Ct]+Dt3

6 , j < m− 1

xj , otherwise

(9)

where dj is given by (7), j = trunc(dj) and t = dj − j.
Parameters A, B, C, and D are given respectively by:

A =

{
xj , j = 0

xj−1 + 4xj + xj+1, otherwise
, (10)

B = 2xj + xj+1, (11)

C = 2xj+1 + xj , (12)

and

D =

{
xj , j ≥ m− 2

xj + 4xj+1 + xj+2, otherwise
. (13)

Indirect encoding strategies based on interpolations or
approximations result in smoothed refractive index pro-
files as shown in Fig. 1, where the vector X =
{0.0, 0.25, 0.1, 0.7, 1.0, 0.7, 0.1, 0.25, 0.0} was used to pro-
duce curves of M = 200. Smoothed profiles generates less
undesired reflections which decreases the noise and minimizes
undesired side lobes in the reflectance spectra. Furthermore,
slow varying profiles are simpler to be manufactured than
chaotic ones usually generated by direct encodings.
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Fig. 1: ν profiles calculated using LE, QSE and CSE for M =
200, obtained from a test curve with m = 9.

IV. EVOLUTION STRATEGY

Evolution Strategies, among other meta-heuristics like GA,
evolve individuals applying nature inspired operators. Back in
1970s, ES used to evolve a single individual by creating only
one child each generation [14]. Modern versions of ES use
a population of parents and differs from GA basically in the
encoding and selection schemes [15].

The adapted modern version of ES used in this article could
be defined as (SA,SB)-ES, where SA and SB are respectively
the sizes of parent and child populations [16]. The algorithm
is shown in Fig. 2. It starts creating two populations, A and
B, to store respectively SA and SB individuals. Inside the
generation loop (line 5), each individual of B is replaced by a
new one made by the combination of intermediate crossover
and Gaussian mutation. r in line 9 represents an uniform
random value between 0 and 1. In this same line the function
PC() returns the crossover probability based on A1 rank,
using Adaptive Genetic Algorithm (AGA) procedure defined
in [17]. Hence the crossover operator is optionally applied in
line 11 using A1 and A2 (A2 ̸= A1) as parents . In line 12
the mutation is applied using as standard deviation the value
returned by function δ(). This function implements an adapted
AGA procedure because the original one was not defined for
Gaussian mutation:

δ(A1) =

{
δ1

rank(A1)
m , rank(A1) < m

δ2 otherwise
, (14)

where function rank() returns the rank of an individual inside
population A (it returns zero for the best and SA − 1 for the
worst), m is the rank of the individual whose fitness value
is closest to the average, δ1 and δ2 are normalized deviation
constants. In the line 14 all individual of population A are
replaced by SA individuals copied from B. The preparation
for the next generation is complete after the elitist procedure
from 15 to 18. Note in the line 18 that the individual Ab is
inserted in A, which set the A size temporally to SA+1 until
A be reset in line 14 of the next generation.

The fitness calculation of each individual is based on the
sum of squared errors between the target curve and the

01. Start A with SA random individuals;
02. Start B with SB (SB > SA) individuals;
03. Calculate the fitness for all individuals of A;
04. Store the best A individual in Ab;
05. For each generation:
06. For each B individual from B:
07. Select a random individual A1 from A;
08. B = A1;
09. If r < PC(A1):
10. Select a random individual A2 from A;
11. B = Crossover( A1, A2 );
12. B = Mutation( B, δ(A1) );
13. Calculate the fitness of B;
14. Replace A by SA best individuals from B;
15. If Ab worse than A best:
16. Update Ab;
17. If Ab better than A best:
18. Insert Ab in A;

Fig. 2: ES algorithm.

reflectance spectrum. Let Ri be the ith reflectance value
calculated for wavelength λi and Ti be the respective target
value. The fitness value f can be calculated by

f =
n∑

i=1

(Ri − Ti)
2 (15)

where n represents the number of samples used to build the
reflectance curve. The ES of Fig. 2 minimizes f .

V. SIMULATIONS

In order to validate the proposed encoding schemes, the
ES defined in the previous section IV was applied using
direct encoding, LE, QSE and CSE. All following results were
obtained using SA = 10, SB = 40, and δ1 = δ2 = 0.01. The
maximum number of generations of 10000 was used as stop
criteria.

Two projects were used to compare the proposed techniques.
The first one was a FBG centred in 1.55µm and the second was
TFBG from 1.5495µm to 1.5505µm. The target curves of both
are shown in Fig. 3. Note that the target curve for the FBG is
not continuous. The interval from 1.5498µm to 1.5502µm is
between two gaps of 0.05nm. They offer accommodation space
for reflectance curves once abrupt targets are very difficult to
fit.

The fitness in all simulations were calculated using (15)
with n = 100. Samples are spaced uniformly in terms of
wavelength inside the target region. If one sample drops inside
a gap in the FBG target, it is not considered in the sum of (15).
In all simulations the number of uniform sections used was
50 (M = 50).

For each project, for each encoding, the ES was tested 10
times with different random initial populations.

A. FBG project

For the FBG project, all sections used ∆z = 200µm and
λB = 1.55µm. Indirect encoding schemes used m = 5 for ν.

Fig. 4 compares the ν profile and reflection curve for the
best solutions synthesized by ES using LE, QSE and CSE for
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Fig. 3: Target curves for FBG and TFBG projects.

the Bragg reflector project. The linear interpolation bring the
worst results among the indirect encoding schemes. QSE and
CSE schemes give almost same results. Fig. 5 compares the
results obtained for QSE with direct encoding (DE). Direct
encoding achieved the best reflectance curve, but its ν profile
is not as smooth as others obtained using QSE and CSE. It is
interesting to observe how all profiles are near each other.

Fig. 6 shows the average evolution of fitness in function
of generation number for ES using DE, QSE and CSE. Direct
encoding has poor performance since spends more generations
to reach convergence. This behavior was expected because ES
using DE deals with 10 times more dimensions in search space
than indirect encodings. The number of generations can be
used safely as performance measurement parameter because
the fitness function is called exactly 40 times each generation.
Furthermore, the computational time spent in interpolations
and spline approximations is negligible next the processing
time spent in fitness calculations.

Table I shows performance parameters: best final fitness
found in all 10 runs, worst fitness found, the mean and the
standard deviation. It also shows the convergence number, i.e.,
the number of generations necessary to grant a fitness only
0.1% higher than the last generation best fitness.

TABLE I
FBG PERFORMANCE PARAMETERS

Parameter DE LE QSE CSE
Best 0.0286 0.05667 0.03690 0.03870
Mean 0.0314 0.05671 0.03692 0.03872
Worst 0.0424 0.05674 0.03695 0.03875
Deviation 1.76E-5 1.98E-5 1.60E-5 1.63E-5
Convergence 2812 208 185 141

B. TFBG project

For the TFBG project, all sections used ∆z = 400µm and
linear chirp defined by the variation of λB in function of k.
As stated in [12], the linear chirp is necessary in order to
achieve the desired bandwidth of 1nm. But differently from
[12], where the linear chirp was fixed, here it was defined
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Fig. 4: ν profiles (a) and reflectance spectrum (b) for FBG
synthesized using LE, QSE and CSE encodings.
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Fig. 5: ν profiles (a) and reflectance spectrum (b) for FBG
synthesized using QSE and DE.

by ES itself by encoding λB in individuals using LE with
m = 2. Thus, indirect encoded individuals were represented
in vector form as {x0, x1, x2, x3, x4, x5, x6, y0, y1} with νk
defined from x0 to x6 by (6), (8) or (9) using m = 7 and with
λk given from y0 and y1 by (6) (replacing xk by yk). For direct
encoding, the individuals were represented in vector form as
{ν0, ν1, ...νk, ...νM−2, νM−1 y0, y1}, with λk given from y0
and y1 by (6) in the same way as in indirect encoding.

Fig. 7 compares the ν profile and reflection curve for
the best solutions synthesized by ES using LE and QSE
and CSE for the TFBG project. As observed in the Bragg
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Fig. 6: Average curves of fitness value in function of genera-
tion number for QSE, CSE and DE.

reflector project, the linear interpolation brings the worst
results among all studied indirect encoding schemes. QSE
and CSE are similar each other. Fig. 8 compares the results
obtained for QSE with direct encoding. Differently from the
Bragg reflector project, the direct encoding resulted worse
than indirect ones. In the other hand, the chirp obtained
for DE was only 0.1062nm/mm, lower in magnitude when
compared to −0.7893nm/mm for LE, 0.7817nm/mm for QSE
and 0.7743nm/mm for CSE. The minus signal for LE chirp
indicates a decreasing λB toward the last section of FBG
and explain the inverted ν profile. Since no restrictions were
imposed concerning the chirp signal, negative and positive
values were obtained evenly for all encodings.

Fig. 9 shows the average evolution of the best fitness in
function of generation number for ES using direct encoding,
QSE and CSE. Differently from the FBG project, the direct
encoding typically ends its evolution early, probably trapped
near some local optimum after 1000 generations. QSE and
CSE show close performances with QSE being slightly better.

Table II shows performance parameters for TFBG project.
As observed in the FBG project, the QSE is again the best
among all indirect encoding schemes, although its fitness
standard deviation resulted slightly inferior when comparing to
CSE. In Table II for indirect encodings the convergence occurs
with more generations than observed in Table I. It is not a
surprising result because the number of dimensions in TFBG
project was 9 against 5 in FBG project. For direct encoding,
the reduction of the convergence parameter observed can be
explained only by premature convergence. TFBG project is
really a more complex project to synthesize (with an increase
of 2 dimensions in search space) than FBG and it would
demand an ES with larger population in order to achieve better
results using DE.

VI. CONCLUSIONS

Spline encodings combined to a modified evolutionary
strategy have been successfully applied in the FBG synthesis.
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Fig. 7: ν profiles (a) and reflectance spectrum (b) for TFBG
synthesized using LE, QSE and CSE encodings.
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Fig. 8: ν profiles (a) and reflectance spectrum (b) for TFBG
synthesized using QSE and DE.

Two projects have been considered and comparisons involving
quadratic and cubic spline encodings, direct encoding, and
linear encoding have been provided. It has been shown that
spline schemes are able to reduce the number of dimensions
and generate attractive softened refractive index profiles.

Quadratic spline encoding (QSE) should always be con-
sidered in detriment of cubic encoding (CSE) because it is
simpler, has comparable performance and give better results.

However, spline encodings are not free of issues. If the
search space is too much simplified, the possible solutions
can loose its flexibility. That occurred in the simple FBG



10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

Generation

F
itn

es
s 

va
lu

e

 

 
DE
QSE
CSE

Fig. 9: Average curves of fitness value in function of genera-
tion number for QSE, CSE and DE.

TABLE II
TFBG PERFORMANCE PARAMETERS

Parameter DE LE QSE CSE
Best 0.3307 0.0878 0.0739 0.0776
Mean 0.3836 0.5836 0.0798 0.0840
Worst 0.4537 0.8120 0.0889 0.0891
Deviation 0.0408 0.3430 0.0043 0.0033
Convergence 1065 396 902 761

project where the direct encoding overcame indirect encoding
schemes. Nevertheless the results from spline schemes are
more attractive due its simpler profiles. An interesting pos-
sibility to conciliate performance and flexibility would be to
use spline encoding to achieve an initial solution for further
application of a direct encoded meta-heuristic or another
suitable optimization technique.

The definition of m parameter in indirect encodings was
accomplished based on a trial and error procedure. A better
way to do that could be through a progressive spline encoding
scheme where the number of parameters m would be increased
gradually whenever the population diversity drops below a
threshold. This technique would require the insertion of new
random parameters in individuals in the middle of optimization
process, probably in a very similar way as performed in [18].
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