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Abstract- This paper presents an approach based on differential
evolution (DE) for the design of thin film filters. Four projects of
thin film filters are evaluated and the results are compared with
particle swarm optimization (PSO). The results obtained show
that DE can be a viable technique on the design of this kind of
optical filters.
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I. INTRODUCTION

Thin film filters are important components in the field of
optics. There is a wide range of applications for them, like
antireflective coatings, wavelength interrogation systems in
optical sensors and production of polarized light in liquid
crystal monitors. In telecommunications, such filters can be
used as couplers, in high-capacity WDM systems and
sensoring, among many others applications.

Essentially, thin films filters are made of layers sequences
(usually compounded of dielectric materials) with different
thickness. The careful choice of these materials, the number of
layers and their thickness will determine the filter's optimum
behavior in function of wavelength, incidence angle and kind
of light polarization [2].

Although a thin film filter can be idealized in a way that
each layer is constituted of an arbitrary materials number, for
practical reasons, it is often desirable to design them using a
limited number of materials. A common approach is to use
two alternated materials having different refractive indices
[3][4].

Analytical (classic) methods of design can be used for
simple implementations. However the more complex is the
optical filter, the more complex is the mathematical model that
describes it. This prevents the successful application of
analytical methods in many cases. This limitation makes
necessary the use of other kinds of tools, like optimization
techniques.

A widespread branch of the optimization nowadays is the
evolutionary techniques. These techniques employ a direct
search where a set of possible solutions to the problem are
simultaneously evolved through variations in their parameters
and stochastic decision rules that select the best ones at each
iteration. In this way, they are well-suited where analytical
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methods do not apply or for discontinuous, non-linear and
multi-modal problems. Evolutionary optimization techniques
have been successfully applied in the design of optical
components [5][6]. In special, genetic algorithms (GA) [3] and
particle swarm optimization (PSO) [1] are used on the design
ofoptical filters.

Among the most recent evolutionary optimization
techniques, differential evolution (DE) has emerged as one of
the most versatile techniques in recent years. DE is a simple
and robust algorithm that has presented good performance in a
great number of different areas in engineering like neural
networks, synthesis of modulators and aerodynamics, for
instance [7][8].

In this paper, DE is used to design thin film filters. The
results obtained applying DE are compared to the results
presented in [1], where PSO is employed as the optimization
technique. From the best of authors' knowledge, DE was
never applied to the design of thin films filters in spite of its
good performance in many other areas of engineering.
Additionally, previous works [9][10] have presented
comparisons between DE and other evolutionary techniques in
numerical benchmark problems, where DE has outperformed
the others in most of the analyzed cases.

The remaining of this paper is organized as follows.
Section II defines the problem to be addressed and how the
optimization process deals with it. Section III provides a
background about the differential evolution optimization
technique. Section IV describes the thin films projects
evaluated in this paper. In Section V, the results obtained are
presented and analyzed while Section VI provides a summary
and the conclusions.

II. OPTICAL FILTER ANALYSIS

Thin film filters can be understood as a set of N different
materials films (layers) superimposed, as shown in Figure 1.
Each layer j has refraction index n, and thickness ~Zj. In this
way, the design of these structures basically consists in looking
for the combination of refraction indices and thickness for each
film that makes the reflectance spectrum as close as possible
from the desired target.
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As mutation process plays a determinant role in DE, many
schemes are proposed in the literature [14]. In this paper, the
employed mutation scheme is the DE/rand-to best/I. This
scheme is described by

Figure 2. DE basic algorithm.
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• Recombination (crossover): consists in promoting
parameters exchange between a parent individual and its
corresponding mutant, resulting in a trial individual. DE uses
a non-uniform crossover that can take parameters from one
parent individual more often than it does from others.

• Selection: operator that selects the healthiest (with the best
fitness) between a parent individual and its corresponding
trial individual.

As can be noticed, DE algorithm uses mutation operator as
a search mechanism and selection operator to direct the search
towards the prospective regions in the search space. This
extraction of distance and direction information from the
population to generate random deviations results in an adaptive
scheme with excellent convergence properties [14][15].

The control parameters of DE are the population size NP,
the crossover constant CR, and the scaling factors F and A,
where CR E [0,I] and F and A E [0,2] .

The general procedure for the DE algorithm is as follows.
Firstly, an initial population is uniformly generated in the
search space. Then, for each individual is created a
corresponding mutant. Recombination comes next, producing a
trial individual for each parent individual. Finally, selection
process chooses between each parent individual and its trial
counterpart , based in their fitness, in order to generate a new
population with the healthiest individuals. The basic DE
algorithm is summarized in Figure 2.

other population-based search methods [8]. However, the
crucial idea behind DE is a new scheme of search where new
individuals, called mutant, are created through the addition of
weighted difference(s) between two or more population
individuals to another one [13]. Since DE works with real
coding, each individual is an n-dimensional vector, where n is
the number ofparameters to be optimized.

The main operators associated to DE are:

• Mutation: main DE operator. Consists in create, for each
individual of the current population, a new associated
individual, called mutant, from a weighted sum of two or
more other individuals.
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To be fair when comparing results between DE and PSO,
the objective function F(x) has to be the same that is used in
[I] , which is the inverse of the mean square error. However,
since DE essentially deals with minimization problems, the
objective function used here is the multiplicative inverse (i. e.
the mean square error).

It is also important to point out that the thin film filter
analysis method used to obtain F(Ai,X) was the characteristic
matrix method [11][12]. Another important point is that the
number of samples used to define the reflectance curve was
fixed in one hundred (NA = 100).

Each solution vector x corresponds to a possible thin film
filter. Therefore, the solution vector x that makes F(x) assume
its minimum value corresponds to the filter which gets closer
to the project specifications. In this way, from a mathematical
point-of-view, the process of designing thin films filters is
reduced to the problem of minimizing the function F(x).

F(x) is the objective function to be optimized;
x is a solution vector that represents a point in the domain

of F(x);
NA is the number of samples used to define the reflectance

curve, which is a function of wavelength;
i is the index of the sample;
T(Ai ,x) is the reflectance value obtained in the wavelength

Ai , taking into account the given vector x;
FD(A) is the filter desired reflectance in the wavelength ..1.;.

111. DIFFERENTIAL EVOLUTION

DE was developed by Rainer Stom and Kenneth Price in
1995 to solve Chebychev polynomial fitting problem. The DE
algorithm has three main advantages; finding the true global
minimum regardless of the initial parameter values, fast
convergence, and the usage offew control parameters [13][14].
The overall structure of DE algorithm resembles that of most

From the optimization point-of-view, the problem
described above can be stated as follows:

Figure 1. Thin film filter structure with N layers, including cover and
substrate. I is incident beam oflight and 0 is angle of incidence. R is the

reflected light while T is the transmitted light.
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"»= 2.n+l, (4)

where v is the mutant vector; xi,G, X r2,G, X r3,G are three different
individuals chosen randomly; Xbest ,G is the best individual of the
current generation; F and A.. are the scaling factors, where F
controls the random displacement of X i,G and A.. controls the
displacement towards Xbest ,g- The subscript G indicates the
generation number. The Figure 3 graphically depicts the
creation process of a mutant using the scheme DE/rand-to
best/I.

x NP Parameter vectors from generation G
o Newly genera ted parame ter vectory

2$i ,G + A(& est,G -~i .G)

""'----------------------+ X1

Figure 3. Two dimensional example ofan objective function showing its
contour lines and the generation ofa mutant vfrom scheme DE/rand-to best/1.

It can be noted that the mutant vector v is placed between a
random individual and the best individual of the current
population.

The scheme DE/rand-to best/l was chosen due to its
capacity of use information from random vectors and the best
individual, giving to the algorithm characteristics of
randomnees and convergence, which is statistically more
efficient than the other schemes.

IV. THIN FILM PROJECTS

In this section, the four thin film filters projects to be
analyzed are described. The first two are proposed in [5] and
the last two are proposed in [16]. These projects are also
analyzed in [1] using PSG.

A. Antireflective Coatings

The first two projects consist in designing filters called
antireflective coatings. Antireflective coatings are a type of
optical coating applied to the surface of lenses and other optical
devices to reduce reflection. This improves the efficiency of
the system since less light is lost. These antireflective coatings
are often designed to act in the spectral zone between
ultraviolet and infrared.

In these two projects the number of layers is also a variable
to be optimized, thus the problem becomes more complicated,
because it can be said that it is a problem with a variable
number of parameters to be optimized. The total number of

parameters np is given by

since two parameters, index of refraction and thickness, are
associated to each layer, and the total number oflayers n is also
a variable to be optimized by the algorithm.

1) Project 1: The objective here is to reduce to zero the
reflectance of a thin film filter with substrate index of
refraction 4, in the spectral region that goes from 7.7r.tm to
12.3r.tm. The detailed specifications of this project are shown
in TABLE I.

TABLE I. PRO JECT I SPEClFICAnONS.

Specification Value
Spectral Range (urn) 7.7 to12.3

Angle ofIncidence (degress) 0

Cover Refractive Index 1.0

Substrate Refractive Index 4.0

Refractive Indices 2.2 and 4.2

Maximum Number of Layers 4

Layer Minimum Thickness(urn) 0.01

Filter Maximum Thickness(urn) 11.2

2) Project 2: In this project, the objective also consists in
reducing to zero the reflectance of a filter with substrate
refractive index 4. However, this time, the spectral region of
interest goes from 2.8r.tm to 5.5r.tm. The detailed specifications
ofthis project are shown in TABLE II.

TABLE II. PROJECT 2 SPECIFICAn ONS.

Specification Value
Spectral Range (urn) 2.8 to5.5

Angleoflncidence (degrees) 0

Cover Refractive Index 1.0

Substrate Refractive Index 4.0

Refractive Indices 1.35 and 2.4

Maximum Number of Layers 8

Layer Minimum Thickness(urn) 0.01

Filter Maximum Thickness(urn) 8.0

B. Optical Filterfor Sensors Apllications

Thin film filters can be used for interrogating wavelength in
sensor systems. By using ramp-shaped reflectance spectrums, it
is possible to convert quantities expressed by frequency
deviation to quantities expressed in variation of optical power,
which is simpler to detect [1].

1) Project 3: This project consists in a filter immersed in
air with a reflectance spectrum that looks like an ascending
ramp in the interval from OAr.tm to 0.7r.tm. The minimium
reflectance is 0% and the maximum is 100%. The detailed
specifications of this project are shown in TABLE III.

TABLE III. PROJECT 3 SPEClFICAnONS.

Specification Value
Spectral Range (urn) 0.4 toO.7

Angle oflneidence (degrees) 0
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Cover Refractive Index 1.0
Substrate Refractive Index 1.0

Refractive Indices 1.0583 and 1.68
Number ofLayers 15

Layer Minimum Thickness (urn) 0.05
Layer Maximum Thickness (urn) 0.33

C. Unconventional Optical Filters

The fourth project is an unusual project of an optical filter
that does not have any straight application but is very useful to
test the efficiency of DE in designing complex filters.

1) Project 4: This project consists in a filter immersed in
air capable of reflecting 50% of the luminous energy in the
interval ofOAllm to 0.51lm (blue light range) and 100% of the
luminous energy between 0.61lm and 0.71lm (green light
range). In the interval of OSum to 0.61lm (red range) the filter
must be transparent. The detailed specifications of this project
are shown in TABLE IV.

A. Project 1

The filter designed using DE presents a better performance
concerning the reflectance than the filter designed in [l] , as
can be seen in Figure 4. The mean reflectance for PSG is
0.0217 while for DE is just 0.0203, with standard deviation of
0.0056 and 0.040, respectively. This is emphasized by the
values in TABLE VI. The mean square reflectance error
associated to DE is around 15% less than that obtained using
PSG.

In terms of filter configuration, DE provided a filter with
four layers and with the double of the length achieved by PSG,
as can be seen in Figure 5.
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Figure 5.(a) PSO and (b) DElayersconfiguration obtained in project I.

2.5

4 53 52 5

(b) Thickness (IJm)

1 1.5
(a) Thickness (~m)

1.5

0.5

Algorithm OFV

DE 4.3725 x 10.4

PSO 5.1387 X 10.4

05

-28 "

·30 \
iii" \
~ -32 \ /"

.n .34 \ //

'--.--

"l ~"""_..ion j, . , . ,

1'::ijli i l~ 3 . ... . •...... . .: [" :. . •. . . . . . . . . . . .:. . . • . .. . . . .. . : .
.::: ' . , . ,
~ 2.5 --- ----- --- -- ~-- --- -- --- --- -i -- --- --- -- ---~-- -- --- --- -- -1- -- --- --- --- .t----

2 ............. ••...... ....... •.............. ' ............. •.............. ' ....

Figure 4. Project I (a) retlectanceand (b) dBerror curves.

10'
(b) Wavelength (~m)

~.:4.1] !I IT"r ··'"!mimlm'j~3 5 ~ ~ , : , ~ ~ ~ : ,..
e : : : : :::: :u 3 + , , -t- : -f- •••• • -t - + + ,..
~ : : : : , : : : ::
&2 5 ------ 1-------~ -----+------1------ ~ -----1-------~------ 1- ------~------ +-

" " ' "2 ••• ••- •••••••• ' •••• ••: ••••••• ' ••••••-' •• •••• '•••• ••-' •••• •• ••-•• ••-' . -••• •: ••

SPECIFICATION VALUE
Spectral Range (urn) 0.4 to0.7

Angle of Incidence (degrees) 0
Cover Refractive Index 1.0

Substrate Refract ive Index 1.0
Refractive Indices 1.46 and 2.1
Number of Layers 20

Layer Minimum Thickness(urn) 0.045
Layer Maximum Thickness (urn) 0.24

TABLE V. VALUESOF TilE CONTROLPARAMETERSUSEDINTilEPROJECTS.

TABLE IV. PROJECT4SPECIFICATIONS.

V. SIMULATIONRESULTSAND ANALYSI S

In this section, it is presented the results obtained applying
DE to the projects described in Section IV. As previously
stated, the analysis presented here is carried out based on both
the predefined targets and the results described in [1], where
PSG is used as the optimization technique.

The results for each project are summarized in two figures
and one table. The first figure shows the reflectance profile
obtained using DE in comparison to the target and PSG's
reflectance presented in [1], in function of the defined spectral
range. Curves of error in dB are also provided in this figure.
The second figure shows the layers configuration obtained
using DE in comparison to that shown in [1]. The table shows
the values ofthe objective function obtained using both DE and
PSG, or in other words, the mean square reflectance error.

The values of the control parameters of DE are summarized
in TABLEV.

Project NP F A. CR
I 100 0.4 0.3 0.5
2 100 0.4 0.3 0.5
3 80 0.2 0.3 0.5
4 80 0.2 0.3 0.5

B. Project 2

In this project, DE obtained once again a better result, as
indicated by Figure 6. DE mean square reflectance error is
about 56% less than that obtained using PSG, as can be seen in
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Figure 8. Project 3 (a) reflectance and (b) dB error curves.
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other hand, the angular coefficients for results obtained by DE
and PSO are 3.3069 and 3.3161, respectively, showing a
slightly match for DE.
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TABLE VII. In special, the mean reflectance is 0.0093 for PSO
and while for DE is just 0.0058, showing the best efficiency of
the last one. The standard deviations are 0.0032 and 0.030 for
DE and PSO, respectively.

From Figure 7, it can be noted that the filter designed by
DE is about three times longer than PSO's filter and also has
three times more layers. This means that the filter designed by
DE is more complex than PSO's, but once again more
efficient in terms of reflectance.
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Figure 6_ Project 2 (a) reflectance and (b) dB error curves,
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Figure 9. (a) PSO and (b) DE layers configuration obtained in project 3.
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Algorithm OFV

DE 4.0766 x 10-4

PSO 7.3099 X 10-4

TABLE VII. O BJECTIVE FUNCTION VALUES (OrV) OBTAINED IN PROJECT 2_

Algorithm OFV

DE 43085 x 10-5

PSO 9_8232 X 10-5

C. Project 3

In this project, the number of layers is not a variable (i.e.
its value is already known). In spite of the filters designed by
DE and PSO have almost the same length (Figure 9), DE
mean square reflectance error is about 44% less than the
achieved by PSO, as can be noted from Figure 8 and TABLE

VIII. The angular coefficient of the target is 3.3333. On the

D. Project 4

In this project, DE slightly outperformed PSO again, but
both techniques obtained very similar results. The filters
obtained using PSO and DE have almost the same length (see
Figure 11), and DE mean square reflectance error is only
about 12% less than that obtained using PSO, as can be noted
in TABLE IX.

Figure 10 shows the reflectance curves obtained using DE
and PSO and the associated errors.

Regarding to each range, DE has obtained better results
both for the mean reflectance and standard deviation, except
for the first range (blue) where PSO's mean reflectance value
(0.4923) is only 1.54% apart from the target value (0.5) while
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TABLE IX. OBJECTIVE FUNCTION VALUES(OFV) OBTAINEDIN PROJECT4.

Figure 11. (a) PSO and (b) DE layers configuration obtained in project 4.

[I] G, Borges, C. Sales, M, Souza, J. Costa, "Design of multilayer optical
filters using PSO," Original in Portuguese, Proceedings of the 25th
Brazilian Symposium on Telecommunications, Recife, PE, 2007.

[2] A Chandran, " Sel f-Assembled multilayered dielectric spectral filters",
M.S. thesis, Faculty of Virginia Polytechnic Institute, 2001.

[3] D.G. Li and AC. Watson , "Optica l thin film optimization design using
genetic algorithms," IEEE International Conference on Intelligent
Processing Systems, China, 1997.

[4] Ronald R. Willey, "Practical design and production of optical thin
films ," New York: Marcel Dekker Inc. , 2002.

[5] 1. A Dobrowolski, Parmejeet Panhhi , e Martin High , cc Antireflection
coatings designed for two different infrared substrares", Appl, Opt. 35,
2934-2946 (1996).

[6] C. Riziot is, AV. Vasilakos, "Computational intell igence in photonics
technology and optical networks: A survey and future perspectives,"
Inforrnat. Sci. (2007), doi: 10,1016/j.ins.2007.06.012.

[7] R. Stom, K Price, "Differential Evolution," available at:
http ://www.icsi.berkeley.edu/- storn/code.html . accessed on April 2009.

[8] T. Rogalsky, R. W, Derksen and S. Kocabiyik, " Differential Evolution
in aerodynamic optimization," Proceedings of the 46th Annual
Conference of the Canadian Aeronautics and Space Institute, pp, 29-36 ,
1999.

[9] S Mishra, S. K., "Global optimization by differential evolution and
particle swarm methods: evaluation on some benchmark functions,"
(September 30, 2006), Available at SSRN :
http://ssm,com/abstract=9338 27 .

[10] Jakob Vestcrstrern and Rene Thomsen, "A comparative study of
differential evolution, particle swarm optimization, and evolutionary
algor ithms on numerical benchmark problems," Congress on
Evolutionary Computation, vol, 2, pp, 1980-1987,2004.

[II] S. T . Peng, Theodor Tamir, e Henry L. Bertoni, "Theory of periodic
dielectric waveguides," IEEE Transactions on Microwave Theory and
Techniques, vol, 23, pp. 123-133,1975.

(12) M. Born and E. Wolf, "Principles of optics," New York: Pergamon,
1987.

[13] R. Storn, K Price, "Differential Evolution - a simple and efficient
heuristic for global optimization over continuous spaces," Journal of
Global Optimization, vol, II, issue 4, pp, 341-349, 1997.

[14] D. Karaboga and S. Okdem, " A simple and global optimization
algorithm for engineering. problems: differential evolution algorithm,"
Turk J Elec Engin, vol, 12, no.l , 2004.

[15] R. Storn, "On the usage of di fferential evolution for function
optimization," Biennial Conference of the North American FU7z y
Information Processing Society (NA FIPS), pp , 519-523 , Berkley, USA,
1996 .

[16] M. J. Sousa, "Optical Bragg grating des ign using genetic algorithms
and parallel processing", Original in Portuguese, Federal University of
Pan!, 2003,

almost twice the error provided by DE. Additionally, in all
four projects, DE designed filters with reflectance spectrums
nearer to the target curve.

In general, DE has provided longer filters and with more
complex configurations than those reported in [I]. However,
the efficiency of the filters designed by DE is superior in all
cases.

These results show that DE is a viable optimization
technique for the design of thin film filters.
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presented a better result than PSG, with a more homogeneous
behavior and fitting better the target. Besides, for the upper
range, DE obtained an error significantly smaller than PSG's.
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VI. SUMMARY AND CONCLUSIONS

This paper presented the design of four thin films filter by
the usage of differential evolution optimization technique.
Differential evolution is a fast, simple an easy-to-use
technique, with excellent convergence properties.

DE performed better than PSG in all analyzed projects. In
two of the four analyzed projects, the error provided by PSG is
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