Otimização da largura de banda da antena monopolo dobrada compacta (BFMA) com algoritmo genético.

Dilermando R. de Mélo, Victor A. Dmitriev e Karlo Q. da Costa; Faculdade de Engenharia Elétrica, Universidade Federal do Pará (UFPA), Belém - PA, Brasil E-mail: {dilermando, victor, karlo}@ufpa.br

Resumo -- Neste trabalho se analisa uma antena Monopolo Dobrada Compacta (Built-in Folded Monopole Antenna - BFMA). Na análise, as dimensões da estrutura geométrica da antena são otimizadas com o objetivo de obter a máxima largura de banda de freqüência nas impedâncias de linha de alimentação de 50, 75 e 300 Ω. A modelagem e análise numérica é realizada com o Método dos Momentos (MoM). Para otimização dos parâmetros geométricos da antena é usado Algoritmo Genético (AG). Os resultados calculados são comparados com os resultados obtidos pelo método da tentativa e erro (método paramétrico). Com a técnica do algoritmo genético, a largura de banda de freqüências (BW) apresenta resultados superiores a 43,52% comparados com método da tentativa e erro, para uma perda de retorno de -10 dB. Os programas computacionais usados na aplicação do MoM e AG foram desenvolvidos na plataforma Matlab.

Palavras-chave -- Antena monopolo dobrado, antena de banda larga, BFMA, MoM, Algoritmo Genético.

I. Introdução

NOS últimos anos, devido ao surgimento de novos sistemas de comunicações móveis que possuem maiores larguras de banda de frequências, o desenvolvimento de antenas de banda larga se tornou um dos principais temas das pesquisas em antenas. A BFMA é um exemplo de antena de banda larga. Esta antena é uma versão com geometria modificada da antena FLA (Folded loop Antenna) [1]. A Antena fechada dobrada (FLA) é uma antena típica de alimentação balanceada que tem a função de reduzir a degradação do sinal no plano de terra [2], [3]. Com o reposicionamento do perfil da antena FLA no plano de terra foi desenvolvida a antena BFDA (Built-in Folded Dipole Antenna) que tem sua altura reduzida. A antena BFMA foi originada da Antena Dipolo Dobrada Compacta (BFDA) pela redução de suas dimensões em aproximadamente 40%, transformando sua estrutura em uma antena monopolo. Essa antena possui desempenho em relação à largura de banda próximo ao da antena PIFA. A antena PIFA

é muito usada comercialmente em aparelhos celulares, [3], [4].

Neste trabalho é apresentada a análise numérica de uma antena BFMA de banda larga pelo MoM. As dimensões geométricas da antena são otimizadas pela técnica AG com o objetivo de obter máxima largura de banda de freqüências conectadas com a linha de alimentação nas impedâncias de 50, 75 e $300~\Omega$, para um nível de perda de retorno de -10 dB.

Um programa computacional escrito em Matlab e baseado no método numérico dos momentos, [5] e [6], foi desenvolvido para obtenção da distribuição de corrente na estrutura da antena. Com o programa foi calculada a impedância de entrada, coeficiente de reflexão e diagramas de radiação. Um segundo programa também escrito em Latlab e utilizando as técnicas de AG foi usado para maximizar a largura de banda de freqüências da antena. Os resultados obtidos são comparados com resultados calculados pelo método da tentativa e erro [7].

II. GEOMETRIA DA ANTENA

A geometria da antena BFMA analisada neste trabalho é mostrada na Fig. 1. O comprimento H+B representa a altura total da antena em relação ao plano de terra. As dimensões H, B, L_2 e L_3 , são os parâmetros geométricos otimizados para aumentar a largura de banda de freqüências. A maior dimensão da antena L_1 foi fixada ($L_1 = 1$) e usada para normalizar as demais dimensões (L_1/λ).

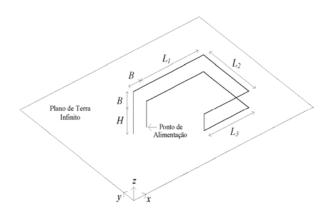


Fig. 1. Geometria da antena BFMA

O plano de terra foi considerado infinito e sem perdas. Os condutores cilíndricos da antena são considerados ideais. As dimensões otimizadas da antena estão apresentadas nas TABELAS 1 e 2.

III. METODOLOGIA

Para a modelagem da estrutura da antena é usado o método numérico dos momentos com um programa computacional escrito na plataforma Matlab. O MoM foi usado para analisar a antena com as equações de Maxwell na forma integral, e no domínio da freqüência. Na técnica do MoM, o cálculo da distribuição de corrente na antena é feita aproximando-se a equação integral por um somatório de pequenos elementos de correntes. De posse da distribuição de corrente na antena é calculada a largura de banda, o coeficientes de reflexão e diagramas de radiação, [5] e [6].

Para otimização dos parâmetros geométricos da antena (H, L_2, L_3, B) como o objetivo de obter a máxima largura de banda foi usada à técnica de algoritmo genético com um programa desenvolvido também na plataforma Matlab. AG é uma técnica da inteligência computacional de busca extremamente eficiente no sentido de varrer o espaço de busca e encontrar soluções próximas da solução ótima. Uma desvantagem do AG em relação a outros métodos de otimização é o longo tempo de processamento computacional [8].

A estratégia do AG que melhor se adaptou na otimização da antena BFMA foi a estratégia elitista, onde o individuo mais apto é preservado para a geração seguinte. O cromossomo foi codificado em binário, e o programa desenvolvido usou técnicas de AG, como segue: seleção por roleta ponderada, cruzamento, mutação, estratégia elitista, sendo que o critério de parada foi o número de gerações (M).

Dados usados no programa AG. Tamanho do cromossomo (m) de cada parâmetro geométrico da antena (H, L_2, L_3, B) foi $m_1 = m_2 = m_3 = m_4 = 10$, sendo o comprimento total do cromossomo (L = 40), para uma precisão de três casas decimais (p = 3); a probabilidade de cruzamento (pc = 0.85) e a mutação (pm = 0.2); sendo que o tamanho da população gerada foi fixada em 200 indivíduos e as gerações variadas de 100 a 300 gerações.

IV. RESULTADOS NUMÉRICOS

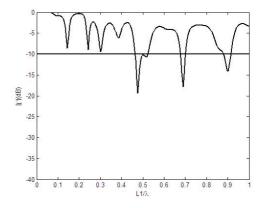
A largura de banda é otimizada pela técnica do algoritmo genético, nas impedâncias de linha de alimentação ($Z_{\rm in}$) de 50, 75 e 300 Ω conectada na antena. O raio dos condutores cilíndricos foi fixado em $a=0.005L_1$ ($L_1/200$) para as impedâncias de 50 e 300 Ω , e $a=0.0166L_1$ para $Z_{\rm in}=75$ Ω . Para calcular a distribuição de corrente, cada segmento da estrutura geométrica da antena foi dividido em $N=N_{Lh}=N_{L1}$ = $N_{L2}=N_{L3}=N_{Lh}=20$ elementos (N, número de discretização).

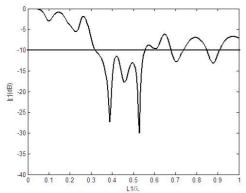
Na Tabela 1, estão apresentados os resultados obtidos do processo de otimização pelo método empírico (tentativa e erro) [7]. Na Tabela 2, os resultados otimizados pela técnica AG

Como se pode observar pelas Tabelas 1 e 2, a largura de banda de frequências aumentou significativamente nas impedâncias maiores, sendo que em $300~\Omega$ apresentou o maior resultado.

TABELA 1. Dimensões da antena otimizada pelo método empírico

Z(\O)	L_2	L_3	Н	В	a	BW%
50	$0,200L_I$	$0,450L_I$	$0,700L_I$	$0,20L_{I}$	$0.005L_{I}$	8,70
75	$0.805L_{I}$	$0.331L_{I}$	$0.565L_{I}$	$0,33L_{I}$	$0.0166L_{I}$	12,10
300	$0,460L_I$	$0.750L_I$	$0,320L_{I}$	$0,23L_{I}$	$0.005L_{I}$	29,25

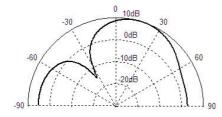

TABELA 2. Dimensões da antena otimizada pela técnica AG

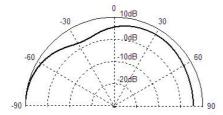

Z(\O)	L_2	L_3	Н	В	a	BW%
50	$0.821L_{I}$	$0,648L_{I}$	$0.024L_{I}$	$0.556L_I$	$0.005L_{I}$	11,78
75	$0,243L_{I}$	$0,468L_{I}$	$0.047L_{I}$	$0.515L_{I}$	$0,0166L_{I}$	22,26
300	$0,622L_{I}$	$0,722L_{I}$	$0,543L_{I}$	$0,426L_I$	$0.005L_{I}$	52,82

Nas seções A e B são apresentados e analisados os gráficos do coeficiente de reflexão e diagrama de radiação, das antenas otimizada por AG com $Z_{in} = 50 \Omega$ e $Z_{in} = 300 \Omega$.

A. Coeficiente de reflexão da antena otimizada por AG

Analisando os gráficos do coeficiente de reflexão, Figs. A.1a e A.1b, observa-se que a largura de banda de freqüência foi aumentada de 11,78% ($Z_{in} = 50 \Omega$) para 52,82% ($Z_{in} = 300 \Omega$), na da região entorno de $L_l/\lambda = 0.5$, para um nível de perda de retorno de - 10 dB.

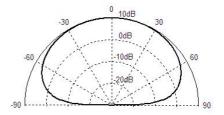



A.1b Coeficiente de Reflexão, $Z_{in} = 300 \Omega$

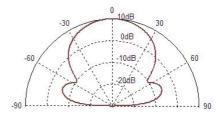
- B. Diagrama de radiação da antena otimizada por AG,
- B.1 Diagrama de Irradiação E_{ϕ} para $\phi = 0^{\circ}$;

O diagrama de radiação E_{ϕ} com $\phi=0^{\circ}$, Fig. B.1a, mostra maior irradiação de energia, com nível entorno de 10 dB, entre o intervalo dos ângulos 0° a 30° . E menor irradiação, com nível entorno de - 14 dB, próximo ao ângulo - 30° . Na Fig. B.1b, a antena apresenta distribuição espacial da energia mais uniforme, com nível próximo a 6 dB. E menor irradiação de energia, entorno de 4 dB, próximo a - 30° .

B.1a) Diagrama de Irradiação E_{ϕ} para $\phi = 0^{\circ}$, $Z_{in} = 50 \Omega$

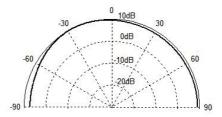


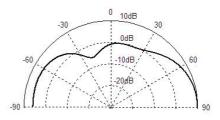
B.1b) Diagrama de Irradiação E_{ϕ} para $\phi=0^{\circ};~Z_{in}=300~\Omega$


B.2 Diagrama de Irradiação E_{θ} para $\phi = 0^{\circ}$;

O diagrama de radiação E_{θ} para $\phi = 0^{\circ}$, Fig. B2a, mostra uma distribuição uniforme de energia, entorno do nível de 10 dB, entre os intervalos dos ângulos de - 60° a 60°. Na Fig.

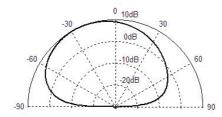
B2b, há maior concentração de energia, entorno do nível de 10 dB, entre os intervalos dos ângulos - 30° a 30°.

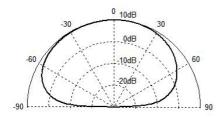

B.2a) Diagrama de Irradiação E_{θ} para $\phi = 0^{\circ}$, $Z_{in} = 50 \Omega$


B.2b) Diagrama de Irradiação E_{θ} para $\phi = 0^{\circ}$, $Z_{in} = 300~\Omega$

B.3 Diagrama de Irradiação E_{ϕ} para $\phi = 90^{\circ}$

No diagrama de radiação E_{ϕ} com $\phi = 90^{\circ}$, há uma distribuição de energia irradiada mais uniforme, com nível entorno de 10 dB, em toda a curva B.3a. Na Fig. B.3b, a distribuição de energia é mais irregular, com nível médio acima de 0 dB, redução entorno dos ângulos de 0° a -30° e aumentos a partir dos ângulos 30° e - 30°.


B.3a) Diagrama de Irradiação E_{ϕ} para $\phi = 90^{\circ}$, $Z_{in} = 50 \Omega$


B.3b) Diagrama de Irradiação E_{ϕ} para $\phi = 90^{\circ}$, $Z_{in} = 300 \Omega$

B.4 Diagrama de Irradiação E_{θ} para $\phi = 90^{\circ}$

No diagrama de radiação E_{θ} com $\phi=90^{\circ}$, a Fig. B4a. mostra maior irradiação de energia, com nível entorno de 10 dB, no intervalo entre os ângulos de 0° a - 60° . Há menor irradiação a partir de 30° até 90° . Na Fig. B4b, mostra a distribuição de energia mais uniforme, com nível entorno de 10 dB, entre os ângulos de - 45° a 30° .

B.4a) Diagrama de Irradiação E_{θ} para $\phi = 90^{\circ}$, $Z_{in} = 50 \Omega$

B.4b) Diagrama de Irradiação E_{θ} para $\phi = 90^{\circ}$, $Z_{in} = 300 \Omega$

V. CONCLUSÃO

Neste trabalho foi usada o método numérico MoM para modelagem e análise, e a técnica de algoritmo genético para otimizar a largura de banda de freqüências (BW) de uma antena monopolo dobrada compacta (BFMA). Os resultados apresentados foram comparados com os resultados obtidos pelo método de tentativa e erro (ou paramétrico). Com AG, a largura de banda de freqüência da antena foi aumentada de 8,70% para 11,78% ($Z_{\rm in}=50~\Omega$); 12,10% para 22,26%, ($Z_{\rm in}=75~\Omega$) e 29,25% para 52,82% ($Z_{\rm in}=300~\Omega$) em relação ao método da tentativa e erro, para um nível de referência de perda de retorno de $|\Gamma|=-10~{\rm dB}$. Sendo que com algoritmo genético, o tempo computacional foi menor. Os programas computacionais foram desenvolvidos na plataforma Matlab.

A antena BFMA apresenta distribuição espacial de energia mais uniforme quando conectada com a linha de alimentação na impedância de 50 Ω , e irradiação de energia mais concentrada quando em 300 Ω . O uso de uma dessas diferentes características depende da aplicação.

Uma proposta para trabalhos futuros é usar a técnica de Enxame de Partículas (Particle Swarm Optimization - PSO) para otimizar a largura de banda de freqüências da antena BFMA e comparar os resultados obtidos com o método AG apresentado neste trabalho.

AGRADECIMENTOS

A Fundação de Amparo a Pesquisa do Estado do Amazonas (FAPEAM) pelo apoio a esse trabalho, como parte do programa RH – POSGRAD.

REFERÊNCIAS

- S. Hayashida, T. Tanaka, H. Morishita and K. Fujimoto, "Built-in folded monopole antenna for handsets", Electronics Letters, vol. 40, Nov. 2004
- [2] S. Hayashida, T. Tanaka, H. Morishita, Y. Koyanagi, and K. Fujimoto, "Built-in half size of folded dipole antenna for handsets", IEEE 2004.
- [3] D. Sasaki, S. Hayashida, K. İmamura, H. Morishita, and M. Usami, "A Planar Folded Dipole Antenna for Handset", IEEE International Workshop on Antenna Tecnology. IEEE 2005.
- [4] H. Morishita, Y. Kim I, Y. Koyanagi, and K. Fujimoto, "A Folded Loop Antenna System for Handsets", IEEE 2001;
- [5] R. F. Harrington, "Field Computation by Moment Methods", New York: Macmillan, 1968.
- [6] Matthew N. O. Sadiku, "Numerical Techniques in Electromagnetics". 2nd ed., Ed. New York: CRC Press LLC, 2001, Pp. 121 - 458.
- [7] D. R. de Mélo, V. A. Dmitriev, K. Q. da Costa e M. T. Reis, "Otimização da largura de banda de uma antena monopolo dobrada compacta (BMFA)". 5th International Information and Telecommunication Technologies Symposium (I2TS'2006), Várzea Grande – Cuiabá, 6 - 8 de dezembro de 2006 - Brasil.
- [8] Ricardo Linden, "Algoritmo Genético: uma importante ferramenta da inteligência computacional", Editora Brasport Livros e Multimídia Ltda, 2006.