
 

Analysis of Current Density Distributions over the Cross-Section of 
OPGW Cables Using an Analytical Model and the FEM Numerical 

Method 
João T. Pinho1, Victor Dmitriev1

, 
 Karlo Q. da Costa1, Luciana Gonzalez1, Sérgio Colle2, 

Marcelo A. Andrade3, João C. V. da Silva3, Mauro Bedia3 

 
 1Department of Eletrical Engineering/ Federal University of Pará, Belém, Pará/Brasil, 

jtpinho@ufpa.br/+55-91-32017299, 1Department of Mechanical Engineering/ Federal University of Santa 
Catarina, Florianópolis, Santa Catarina/ Brasil, colle@emc.ufsc.br/ + 55-48-32342161, 3Prysmian 

Telecomunicações, Cabos e Sistemas do Brasil S.A, Sorocaba, São Paulo/Brazil, 
marcelo.andrade@prysmian.com/ +55-15-32359209 

 
Abstract  —  Multiconductor OPGW cables  have a double 

function: they serve for lightning protection and as a 
communications channel. In this work, we present some results 
of the analysis of current density distributions in these cables 
obtained by an analytical method and using the FEMLAB 
software. 

Index Terms — Cables, waveguide theory, current density. 

I. INTRODUCTION 

OPGW (optical ground wire) cables provide lightning 
protection for overhead power lines and also serve as a fiber 
optic cable for high performance telecommunication network.  
 These cables are composed of an envelope of one or two 
layers of metallic helical wires wound around a core 
containing optical fibers. The metallic helical wires can be of 
the type aluminized steel, aluminum welds or galvanized steel. 

We consider a variant of such cables consisting of three 
layers: dielectric in the core, aluminum in the intermediate 
layer and steel in the last layer. This structure is shown in Fig. 
1. 

 
 
Fig. 1. The real geometry of the cable’s cross-section. 
 

During the occurrence of short circuits or lightning, the 
thermal gradient that occurs in the cable can produce plastic 
deformations, rupture, and the phenomenon of caging. 

The thermal gradient depends on the current distribution in 
the cable. In this paper, the goal is to calculate the current 

density distribution in the OPGW cable using an analytical 
model based on Maxwell’s equations, and using the software 
FEMLAB [1]. The following analysis of the current density 
distribution is performed in the frequency domain. Analytical 
calculations of current distributions of OPGW cables can be 
found in [2-3]. 

II. ANALYTICAL  MODEL 

Our analytical model of OPGW cable consists of four 
homogeneous layers: 1-dielectric, 2-aluminium, 3-steel and 4-
air. This configuration is shown in Fig.2. The conductivities 
of the dielectric and metal layers are finite. The waveguide is 
analyzed by Maxwell´s equations in the frequency domain. 

The eigenvalue problem is considered. Due to the 
cylindrical symmetry of the problem, we consider the 
electromagnetic modes TMz

0n that are not changed with 
respect to the azimuthal coordinateφ  , i.e.         and n is a 
nonnegative integer [2]. 
 

 
 

Fig. 2. Cross section geometry of the analytical model. 
 

The parameters used for calculations of this structure are 
given in Table 1. 
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TABLE 1 
PARAMETERS USED FOR ANALYTICAL MODEL 

Layer Material 
Conductivity 

(S/m) (σ) 

Relative 

permittivity 

Radius 

(mm) 

1 Silica 0 3.8 2.8 
2 Aluminum 3.96×107 1 4.1 
3 Steel 0.2×107 1 7.2 
4 Air 0 1 - 

 
To find the solutions for the electromagnetic fields, 

Maxwell´s equations in cylindrical coordinate system in the 
frequency domain are used. Considering the TMz modes, one 
obtains: 
 

φ
ρ ωµ−=

ρ∂
∂

−
∂

∂
Hj

E
z

E z , 
 

(1) 

ρ
φ ωε−=

∂

∂
Ej

z
H

, 
 

(2) 

zEj
H

ωε=
ρ∂

ρ∂

ρ
φ )(1 , 

 
(3) 

 
where fπϖ 2=  is the angular frequency, f  is the 
frequency in Hz, µ and ε  are, respectively, the magnetic 
permeability and the  electric permittivity of the layers (Fig.1). 

Assuming the variation in z given by zjkze− , the 
components of the fields can be written as follows 
 

zjkzeEzE −
ρρ ρ=ρ )(),( , (4) 

zjk
zz zeEzE −ρ=ρ )(),( , (5) 

zjkzeHzH −
φφ ρ=ρ )(),( . (6) 

 
Using the expressions (1)-(3), the following equations are 

obtained: 
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Substituting (8) and (9) in (7), the differential equation for 

the Hφ component is obtained: 
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where 22222
zz kkk −µεω=−=λ . Substituting x=λρ in this 

equation results the Bessel equation 
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with the possible solutions in the form of Bessel, Hankel and 
modified Bessel functions. The general solutions for the fields 
Hϕ and Ez in layers 1-4 are written in Table 2. 
 

TABLE 2 
GENERAL FIELD SOLUTIONS EZ AND Hφ OF THE WAVEGUIDE 

Fields (eigenfunctions) Eigenvalue and constant 
of propagation 
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In this table, the indexes of each term refer to the 

corresponding layer. 
The eigenvalue equation to determine the parameters γ1- γ4 

presented in Table 2 is derived in this section. Using the 
general solutions presented in Table 2 and applying the 
boundary conditions of continuity of the fields Ez and Hφ at 
the surfaces ρ=a, b e c the following set of equations is 
obtained: 
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To simplify the equations, the following notations are 

introduced: 
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Thus, the system defined by (12)-(17) is 
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The constants C2-C6 are: 
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The system (19) possesses a nontrivial solution if and only 

if the determinant of [x] is null, i.e. 
 

                                       det[x]=0                                 (25) 

 
This is the eigenvalue equation and its solution gives the 

eigenvalue γ1. The parameters γ2- γ4 expressed as functions of 
γ1 are: 
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For the solution of (25), equations (26)-(28) are normalized 

as follows: 
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where 000 εµω=k ,                              ,  
 
and εR4=1. Substituting (29)-(34) in (25), the resulting 
equation becomes a function of ξ. As the elements of the 
matrix [x] are complex, the solutions ξ are also complex 
numbers, with the real part ξr and the imaginary part ξi . With 
these notations, (25) is a system of two equations and two 
unknowns, ξr and ξi. 
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The solutions of (35) are the points where the curves F1 and 
F2 are crossed. 
 

III. ANALYSIS BY FEMLAB 

This section presents some details of the 2D FEMLAB 
model. The well-known Finite Element Method (FEM) is used 
in this software [4]. 

The goal of these calculations is the current density 
distributions over the OPGW cross-section for different 
frequencies. Two geometric variants of the cable’s cross-
section are used in our analysis. The first variant is the 
geometry of Fig. 1 and the second is a modification presented 
in Fig. 3 
 

 

 

 
Fig. 3.  A modification of the cable’s cross-section. 
 

The physical parameters used in these structures are given 
in Table 3. 

 
TABLE 3 

PARAMETERS USED IN STRUCTURE OF  FIGURES 1 AND 3   

Layer Material 
Conductivity 

(S/m) (σ) 

Relative 

permittivity 

Radius 

(mm) 

1 Quartz 1*10-14 4.2 2.35 
2 Aluminum 3.774*107 1 4.35 
3 Steel 4.032*106 1 7 

 
For FEMLAB simulations, the idea of the virtual surface 

current density ( VJ ) in the outer metal layer is used. 
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where tI  is the total real current and R  the radius of the 
cable. 

The details of the discretization for FEMLAB simulations 
are shown in Fig. 4. 
 

 
 

Fig. 4. Details of the discretization used in FEMLAB. 
 

V. NUMERICAL RESULTS 

The OPGW cable has a rather complex structure because it 
is nonhomegeneous in the radial and the azimuthal directions. 
Thus, the analytical model presented in Sec. 2 is a helpful tool 
for the investigations. The variation of the current density, Jz, 
as a function of the radial coordinate, ρ, of the waveguide is 
given in Figs. 5 and 6. These figures show the results 
calculated by the analytical model and by the FEMLAB 
software. 

These results show that at the frequency of 1 kHz, and 
below this value, the current distribution is approximately 
constant with respect to ρ in the regions with the parameters 
shown in Tables 2 and 3. In the low frequencies (f < 1 kHz), 
there is no skin effect. At the frequency of 5 kHz, the skin 
effect appears. 

 
 

Fig. 5. Normalized magnitude of the longitudinal current Jz versus 
radial coordinate for different frequencies. 
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Fig. 6. Normalized magnitude of the longitudinal current Jz versus 
radial coordinate for different frequencies. 

 
The distribution of current density in the cross section of the 

cables of Figs.1 and 3 were also calculated by FEMLAB for 
the frequency of 500 kHz [5]. The regions of the structure in 
blue color indicate the minor concentration of current density, 
the green color indicates the intermediate level of the current 
density, and the red shows the maximum current density. 

           
 
                  (a)                                              (b) 
Fig. 7. Current density distributions  over cross-section for 
the basic model (a) and for the modified variant (b). 

 

VI. CONCLUSIONS 

The main results of this work are as follows: an analytical 
waveguide model and computational program which allow the 
calculation of the electromagnetic fields and current 
distributions in cables consisting of azimuthally uniform 
layers with non-ideal materials, i.e. metals with finite 
conductivity and dielectrics with losses, was developed. This 
model allows, in particular, the investigation of the skin effect 
and the electromagnetic fields inside and outside of the cables. 
The analytical results and those obtained by Finite Element 
Method using the commercial program FEMLAB were 
compared, and the results obtained are in good agreement. 

Two variants of practical OPGW cables were also analyzed, 
using the software FEMLAB to calculate the longitudinal 
current density distributions over the cross-section of the 
cables. 
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