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Abstract. One of the main factors for the knowledge discovery success is re-
lated to the comprehensibility of the patterns discovered by applying data min-
ing techniques. Amongst which we can point out the Bayesian networks as one 
of the most prominent when considering the easiness of knowledge interpreta-
tion achieved. Bayesian networks, however, present limitations and disadvan-
tages regarding their use and applicability. This paper presents an extension for 
the improvement of Bayesian networks, incorporating models of multiple re-
gression for structure learning. 

1   Introduction 

Bayesian networks stand as one of the best computational intelligence techniques 
among the existing paradigms, being nowadays one of the best methods for treating 
uncertainty in the field of artificial intelligence [1]. Particularly due to their exception-
al analytical properties to represent domains, correlate and study the dependences 
among its variables, allowing a more easily visualization and understanding of the 
relations among the variables, consisting on a decisive factor and of great value for the 
representation and analysis of the domain by the users. 

However, just like any other computational algorithm, the Bayesian networks also 
present limitations and disadvantages, regarding their use as well as their applicability. 
Among these restrictions, we can point out: the difficulty to correlate variables consi-
dering the time factor, or yet, by the absence of models that would allow a deeper the 
use of its information and results, such as establishing the optimal combination of 
parameters to achieve a certain requirement. Such studies are of utter importance, 
given that they constitute on problems and needs observed on real world domains, and 
which are, eventually, crucial for the decision making process. 

This paper presents a new and optimized method for learning the graphical repre-
sentation of Bayesian networks, in which the creation of the network and the correla-
tion analysis among the variables are made applying multiple regression models. 

The paper is organized as follows: in section 2, some related works to the structure 
learning of Bayesian networks are shown. In section 3, the algorithm for structure 



learning based on multiple regression is presented. The final remarks of the paper are 
presented in section 4. 

2   Previous and related works 

This section we will present some of the works found in literature and that also served 
as basis as well as comparison for the studies presented in this paper. The works are 
also divided here according to the fundaments of their approaches: whether it is based 
on the graphical structure learning of the network; on the search for the best configu-
ration, that is, the set of actions or inferences and furthermore its singular values to 
achieve a specific state; or the temporal analysis for Bayesian networks. 

The graphical learning, the construction of a Bayesian network involves the learn-
ing of the network structure and the definition of the probabilities associated with its 
variables. This process can be done directly with the help of experts in the studied 
domain or automatically, with learning algorithms, which we will focus here. The 
learning algorithms can be classified as being constraint based, where the structure is 
obtained by identifying the dependencies among the variables; or through a search and 
score of the best network structure. 

Here, the search and score approach will be used for the learning of the network to-
pology. The search and score works searching through the space of possible existing 
structures, starting from a graph with no arcs and adding new ones, calculating a score 
for the given structure until no new arc can be added. 

In [2] a search and score method to induce Bayesian networks is proposed, using 
both fuzzy systems and genetic algorithms. It is proposed a scoring metric based on 
the evaluation of different quality criteria, which is computed by the fuzzy system; 
using the genetic algorithm as means to search through the space of possible struc-
tures, which has also been applied to the learning of Bayesian networks [3]. 

The fuzzy system uses as input metrics the Bayesian measure, the minimum de-
scription length principle [4], Akaike information criteria [5], and the estimated classi-
fication accuracy of the network; thus providing the quality of the network as output. 
The genetic algorithm is used to search the possible network structures. 

Comparatives as to the algorithm performance with well-known algorithms 
(BayesN [6], Bayes9 [7], Tetrad [8] and K2 [9]), which will also be presented as 
comparative in section 3, are also shown. 

The use of this approach brings however some limitations such as the fact of it be-
ing sensitive to the selection of the initial population (for the genetic algorithm) as 
well as for the different membership functions (for the fuzzy system). 

Other recent methods implemented for the learning of the Bayesian graphical struc-
ture, usually based on hybrid models can also be seen in [10], [11] and [12], each with 
its own metric of scoring and evaluation: use of (semantic) crossover and mutation 
operators to help the evolution process, penalty measure, and Minimum Description 
Length metric, respectively; [12] proposal however does not involve a need for a 
complete ordering of the variables as input. Further use of genetic algorithms can also 
be seen in [13] and [14]. 



In [15], the use of a previous ordering of the variables is also studied, proposing a 
multi-phase approach for the graphical learning based on the use of distinct but easy to 
implement algorithms, which involves a search method for optimal parents to build the 
structure, followed by a method to eliminate existing cycles in the graph and an finally 
an evaluation of the network using structural perturbation.  

Aside from the ordering of nodes, the dataset (here we will treat only with fully ob-
served cases) size is also an important aspect when considering the network quality 
and convergence speed of the algorithm. Especially since it is NP-hard [16], exponen-
tially increasing the searching space with the number of variables. 

A more thorough overview on the techniques and algorithms for the learning of 
Bayesian networks can be seen in [17]. 

3   Structure learning based on multiple regressions 

The algorithm presented here searches for the best configuration, amongst the space of 
possible structures, for the construction of a Bayesian network from the analysis of 
existing dependences and independences between the variables. The algorithm uses 
the search and score method, analyzing all the possible graphical combinations that 
can be set from the variables of the domain. It will be assumed here, at first, the need 
for an ordinance of the variables; which, though some recent algorithms work without 
this need, they are not, usually, very efficient [17]. 

The structure learning is an important problem to be studied, motivated by the fact 
that the search space of possible structures increases exponentially with the number of 
variables of the model. This exponential growth can be calculated as follow [18]: 
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Equation (2) calculates the number of possible directed acyclic graphs G , that can 
be formed with a number of n  variable. Table 1 [19] presents the number of possible 
graphs (values of G ) as n  increases. 

Table 1. Values for G  obtained as n  increases 

n  )(nG  

1 0100.1 ×  

2 0100.3 ×  

5 4109.2 ×  

10 18102.4 ×  

20 72103.2 ×  

50 424102.7 ×  

100 1631101.1 ×  

 



Here, the analysis for the search of the best Bayesian network that represents the 
domain is made with the use of multiple regressions [20] [21]. The technique of mul-
tiple regression denotes a specific model of multivariate analysis. 

The models of multivariate analysis are used to adequately study the multiple rela-
tions existent among the variables of a domain, in order to obtain a more complete and 
realistic understanding in the decision making process [20]. With the use of multiple 
regressions the changes in the dependent variable can be predicted, in response to the 
changes in the independent variables.  

The search method of the algorithm follows from the ordinance of the variables, 
where for each attribute iX  the possible dependencies of the variable with its prece-

dents are examined (variables parents - iPa ), adding arcs between them and verifying 

the quality of the network created according to its score; continuing, as follows, with 
the search of another attribute, that added to the previous one(s) would increase the 
score of the network. 

The validation of the network, created by each new added arc, is made through re-
gressions, that can be single (when analyzing the relation with only one variable) or 
with multiple variables, as it is usually applied. 

This algorithm of Multiple Regressions for Structure Learning (MRSL) attributes 
the score of each network through the value found by the adjusted coefficient of each 

regression ( 2R ); which is obtained as described next. 

3.1   Modeling and structure of the algorithm 

Assuming a database D  with n  records and i  number of variables, we are searching 
for the best Bayesian network structure SB  for it. We denote the target variable that 

we are analyzing as iY , the k  variables candidates for parents as iAX , the kA  para-

meters to be estimated and the random errors as iu , the generalized formula of the 

multiple regression model can be specified as follow: 

ikikiii uXAXAXAAY +++++= L22110  (2) 

The general system of the multiple regression can then be seen as a matricial sys-
tem and represented according (3). 



















+


















×


















=


















kknknn

k

k

n u

u

u

A

A

A

XXX

XXX

XXX

Y

Y

Y

MM

L

MMMM

L

L

M
1

0

1

0

21

22221

11211

2

1

        1

                            

        1

        1

 (3) 

This way, uXAY += , where: Y  is a column vector, with dimension 1×n ; X  is a 
matrix of size kn × , that is, with n observations and k variables; with the first column 
representing the intercept 0A ; A  is a vector with 1×k  unknown parameters; and u  

is a vector with 1×n  disturbances. 
This specification intends to generate the parameters of vector A; which can be es-

timated as follow: 



( ) YXXXA tt ×=
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 (4) 

With the values of A , the value of the regression coefficient ( 2R ) can then be cal-
culated according to: 
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Where Y  is the mean value of variable Y , and y  is obtained by the subtraction of 

Y  by Y . And thus calculating its adjusted value by: 
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In the same way, the absence of dependencies ( φ=iPa ) for the variable in ques-

tion is assigned when obtained, for each possible relation of dependence, a value close 

to or below zero for 2R . 
Another important aspect is regarding the relevance of the inclusion of new va-

riables in the model. This analysis is made in order to verify whether or not the inclu-
sion of one or more arcs for the variable is indeed relevant for the model, even though 

with this inclusion a higher 2R  might be obtained. The analysis of this aspect is due, 
in particular, to the fact of being verified during the evaluation tests of the algorithm, 

that the 2R  obtained for the best iPa  configuration for the variable iX  with a num-

ber of arcs x  was very close to the one achieved by the best iPa  configuration with a 

number of arcs 1+x . The same behavior was also observed when comparing the 
latter with the value obtained with a number of arcs 2+x , and so on. 

In order to provide the analysis relevance to be generally applicable for datasets 
disregarding their sizes, the F  test, whose formula is presented below, was used to 
evaluate the contribution of the new variables added to the model. 

( )
( ) ( )knR

mRR
F

U

RU

−−
−=
2

22

1
 (7) 

Where 2
UR  and 2

RR  are the 2R  values obtained for the unrestricted (with the inclu-

sion of the new variables) and restricted (without the inclusion of the variables) re-
gressions, respectively, and m  is the number of variables added to the model. The 
statistic distribution F follows with m and kn −  degrees of freedom. If the F statistics 
presents a value different from zero, the added variable is accepted as a possible par-
ent variable. 

3.2   Optimizations studied 

The MRSL algorithm acts in an optimized way, with respect to performance, when 
compared with other existing learning algorithms in the literature. It works directly 
without considering the number of states of the variables, not suffering from any com-
binatory impact that can be implied by them in the search and score of the best net-



work structure. In order to further optimize the performance of the algorithm some 
considerations and heuristics can also be adopted. In the very first iterations of each 
variable, a control can be included in order to decrease the combinatory space to be 
covered and, consequentially its execution time. 

Firstly, from the values obtained in the correlations of degree one (number of par-
ents equals to one) of the variable iX  with its precedents ( 11 ,, −iXX K ), it is already 

possible to observe which, amongst the variables, presents a higher level of correlation 
with iX . This is important as, whenever a new arc can be added in the network struc-

ture, the new combination of parents found will have as component, compulsorily, the 
attribute (or combination of attributes, if the number of arcs is higher than 2) found 
previously. Thus, only the future regressions for models having as component the 
nodes assigned previously will be made. 

Not only that, but if in the correlations coefficients 2R  present values with low 
significance or close to or below zero, the search for a better configuration and admis-
sion of new arcs can cease, as the following ones will also obey the same trend. 

Another aspect that can be manipulated, is the indication by the user specialist in 
the domain of a minimum degree of significance to be verified for the admission of a 
new arc in the structure. 

As described thus far, the algorithm fixates the attributes as the dependent variables 
and study its relations with the preceding variables according to the ordering set as 
input, also applying strategies to diminish the combinatory search space. The causality 
analysis of the algorithm will be further focused now, presenting a means to model the 
network without the need for a previous ordering of the variables. 

3.3   Causality 

The regression model implemented studies the correlation and dependence among the 
variables, having the ordering of the variables as main aspect to attribute the direction 
of the dependence. The sequential order of the variables would be, at this point, very 
important, given that, by itself, the dependence relations among the variables does not 
necessarily implies on a causal relation. 

The study of causality is then applied with the analysis of Granger [22]. Consider-
ing the hypothesis that X can cause Y ( YX → ), the test is established between a re-
stricted regression, in which Y is a function of only its past values; and an unrestricted 
regression, where Y is a function of the values of Y and X. The functions for the re-
stricted and unrestricted regressions are represented in (8) and (9), respectively. 

εααα ++++= −− ststt YYY K110  (8) 

εββααα +++++++= −−−− ststststt XXYYY KK 11110  (9) 

The hypothesis of causality from the analysis of both regressions is then made with 
the F test (Equation 7). So that, if the calculated value of F is higher than its critical 
values [21] the causality from X to Y is accepted. 



With the advent of the causality analysis, it is possible to establish a new search 
heuristic, incorporating it with the model detailed on section 3.1, without the need of a 
previous ordering of the variables. Initially verifying the variables from which the 
attribute present dependences, and then studying the direction of its causality. 

3.4   Performance evaluation 

The evaluation of the model was made considering two aspects: the quality of the 
Bayesian network found by the algorithm, that is, the representativity of the network 
regarding the domain; and its computational performance. 

For comparing the analysis regarding the quality of the generated network, the 
Chest Clinic [23] database was used as application example (usually known as Asia), 
which denotes a problem of a fictitious medical diagnosis, of whether a patient has 
tuberculosis, lung cancer or bronchitis, based on his X-Ray, dyspnea, visit to Asia and 
smoking status. The database possesses 8 binary variables and its Bayesian network 
presents 8 arcs connecting them (Figure 1). 

The database was submitted to our learning algorithm to obtain the structure of the 
Bayesian network. For a quality comparative of the generated network, results from 
other search and score algorithms were used; the algorithms used were the K2, created 
by Cooper and Herskovitz (1992), which to this date is still a great reference among 
the existing algorithms for learning of Bayesian networks, being one of the most 
trustworthy and successful learning algorithms [24]. The results of the following algo-
rithms existing in literature were also used as comparative for the quality of the gener-
ated network for the Asia database: Tetrad [8], Bayes9 [7], BayesN [6] and Genetic-
Fuzzy [2]. 

 
Fig. 1. Bayesian network of the Asia database 

Table 2 compares the result achieved by our algorithm (MRSL) with the one from 
the original (the golden network, as it is also referenced in literature) Bayesian net-
work of the Asia database, as well as the results obtained by others five existing algo-
rithms in the literature (K2, Tetrad, Bayes9, BayesN and Genetic-Fuzzy). The Total 
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column presents the number of arcs found by each algorithm. The column Correct 
contains the number of arcs that were correctly found. The column Additional presents 
the number of arcs that were found and that are not in the original network. And the 
column Absent presents the number of arcs that were not found and are present in the 
original network. 

Table 2. Comparative of the results obtained for the Asia database 

Algorithms Total Correct Additional Absent 
MRSL 8 8 0 0 
K2 8 7 1 1 
Genetic-Fuzzy 9 8 1 0 
BayesN 8 5 3 3 
Bayes9 4 4 0 4 
Tetrad 4 4 0 4 

 
Our algorithm presented results better than the other algorithms, finding an identic-

al structure to the golden network of the Asia database, with no additional nor absent 
arcs. Being followed by the results presented by the K2 and Genetic-Fuzzy algorithms. 

Table 3 presents the results for the structure learning of the Asia network with data-
sets of different sizes; now studying the capacity of the algorithm for obtaining the 
original structure of the network when different volumes of data are available. 

Table 3. Results for the structures obtained according to the amount of data available 

Num. of records Total Correct Additional Absent 
100 9 7 2 1 
200 7 7 0 1 
500 8 7 1 1 
1,000 8 8 0 0 
5,000 8 8 0 0 
10,000 8 8 0 0 

 
The results obtained (Table 3) showed that the algorithm has a good capacity of 

learning, even when working with a small amount of data, finding the original struc-
ture of the network with a data amount of 1,000 records onwards. 

For the performance evaluation of the algorithm, the analysis was made using as 
testbed experiment the model presented by the Asia network, which is composed of 8 
variables and 1,000 records, comparing the results obtained with the ones presented 
by the K2 algorithm. 

The tests made here seeks to verify the performance of the algorithm using as pa-
rameter the discretized states of the database variables, that is, the number of possible 
states that each attribute can assume. The performance tests were made analyzing the 
execution time for both algorithms over the database, with the attributes (initially 
binary) discretized from the two initial states until a maximum of ten. The obtained 
results (Table 4) denote the execution times of the algorithms without considering the 
time spent for reading the database into the memory. 



Table 4. Execution times (in seconds) obtained by the algorithms 

Num. of states MRSL K2 
2 0.08 0.1 
3 0.08 0.14 
4 0.08 0.24 
5 0.08 0.51 
6 0.08 1.35 
7 0.08 3.51 
8 0.08 9.10 
9 0.08 20.05 

10 0.08 44.48 

 
Tables 5 and 6 present the same tests, now also considering an increase in the num-

ber of records of the database to 5,000 and 10,000 respectively. Table 7 presents the 
values, considering only the discretization space of 10, for a better visualization of the 
gradual behavior in the increase of the execution time between the algorithms. 

Table 5. Execution times (in seconds) obtained by the algorithms for 5,000 records 

Num. of states MRSL K2 
2 0.42 0.48 
3 0.42 0.68 
4 0.42 0.93 
5 0.42 1.32 
6 0.42 2.26 
7 0.42 4.53 
8 0.42 10.27 
9 0.42 21.32 

10 0.42 45.42 

Table 6. Execution times (in seconds) obtained by the algorithms for 10,000 records 

Num. of states MRSL K2 
2 0.84 0.96 
3 0.84 1.33 
4 0.84 1.78 
5 0.84 2.32 
6 0.84 3.39 
7 0.84 5.81 
8 0.84 11.74 
9 0.84 22.87 

10 0.84 47.05 

Table 7. Execution times (in seconds) obtained with a number of states set to 10 

Num. of records MRSL K2 
1000 0.08 44.48 
5000 0.42 45.42 

10.000 0.84 47.05 



As it could be verified by the obtained results, the structure learning algorithm 
based on multiple regressions outperforms on both aspects analyzed: with respect to 
the quality of the Bayesian network induced by the algorithm as well as in its compu-
tational performance. The algorithm uses in its structure statistical models with a fun-
damental theory, especially concerning the prediction and correlation analysis of the 
variables; and that, due to its nature, works in an optimized way, improving the per-
formance as the number of states assumed for the variables increases; which is a 
common characteristic for databases that represent real world domains. 

4   Final remarks 

The possibility to represent graphically the structure of the patterns obtained from the 
data, as well as the exploratory character of the analysis allowed by the Bayesian net-
works, enables to indicate more deeply the relationship between the variables of a 
domain, favoring the increase of the comprehensibility of the discovered patterns, as 
well as the identification of the usefulness and relevance of these patters. 

In this paper, a new technique for modeling the graphical structure of a Bayesian 
network was presented, using multiple regressions as the method for analyzing the 
correlations among the attributes. The algorithm proposed implements a method for 
the structure learning which quantifies, based on mathematical models of regression, 
the level of the existing dependence from the variables. Initiating with a network 
without arcs and adding them in accordance with the identified correlations, as the 
search space of possible existing structures for the network is covered. 

The tests carried to study the performance of the algorithm presented promising re-
sults in the observed aspects: regarding the quality of the generated network, when 
comparing with other learning algorithms, obtaining a representative structure of the 
Bayesian network, even when a reduced amount of data is available and; regarding its 
execution performance, achieving better execution times for bases with increasing 
volumes of data and, particularly, for its method of treating the attributes, discrete or 
continuous, not having its performance compromised as the number of possible states 
of the variables increases. 
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