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ABSTRACT: Fractal antennas are characterized by their special geometric characteristics 

which allow a reduction of the antenna dimensions. In this work, we analyze the fractal 

parameters and the radiative properties of modified Koch monopoles. The geometries of the 

antennas are obtained by an ad hoc Iterative Function System algorithm for fractal curves 

generation. Using the Method of Moments for numerical calculations we analyze the influence of 

the antenna geometry on the resonant frequency, current, efficiency, input impedance and 

radiation pattern. 
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I. INTRODUCTION 

       Miniaturization of antennas is one of the trends in modern communications systems [1]. One 

of the techniques used to decrease the antenna’s dimensions is application of fractal geometries 

[2]. The Koch monopoles are fractal linear antennas which have the geometry of the Koch 

curves. These antennas can be for example, vertical arrangements mounted above a ground plane. 

Figure 1 shows four iterations of this fractal. The radiation properties of these monopoles are 

discussed in [3-6]. The reduction of the resonant frequency as a function of the number of 

iterations converges asymptotically to the limit around 44% [3]. For the conventional Koch 

curve, the angle α (which is called the indentation angle) in Figure 1 is 60º and the parameters si 

are equal, i.e. s1=s2=s3=s4.  

       In this paper, we investigate another variant of the Koch monopoles with dimensions smaller 

then the conventional Koch monopoles. In our modified Koch fractals, we fix the values s1=s4 

equal to one third of the total height L (Figure 1) and change the angle α scaling the values of 

s2=s3 in order to preserve the height L constant for all iterations. This leads to a change of the 

geometry and of the fractal dimension. An ad hoc Iterative Function System (IFS) algorithm is 

used to model the antenna's geometry. For numerical calculations of the input impedance, 

resonant frequency, efficiency, current along the conductor and radiation pattern we use the 

Method of Moments (MoM) [7]. 

 

II. FRACTAL DESCRIPTION 

              There is a method to produce the fractals called initiator-generator construction [2]. In 

this method, one begins with a specified initiator, and a generator is applied repeatedly in a lower 

scale to form the fractals.  In Figure 1, for example, K0 is the initiator with the length L, and K1 is 



the generator. Below, we describe the ad hoc IFS algorithm, which is used to obtain the modified 

Koch fractals and show the geometrical properties of these fractals. 

 

A. IFS Algorithm. The initiator with α=0° corresponds to the straight monopole. In order to 

construct the generator, we apply the four affinity transformations W1, W2, W3 and W4 at the 

points that define the initiator’s curve and join the four obtained segments. These four 

transformations can be applied successively to construct the monopoles K1, K2, …, Kn. The 

procedure can be represented symbolically by 
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where n is the nth fractal iteration. Considering the plane xz (Figure 1) and supposing that K0 is 

on the axis +z with one of their extremities at the origin, the transformations are defined by the 

following expressions: 
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where e1=6cosα. These formulas are a generalization of the known ones for the conventional 

Koch fractal. Thus, the conventional Koch monopole can be considered as a particular case of our 

monopoles with α=60°.  Figure 2 shows four iterations of the modified Koch fractals for α=40° 

and α=70°. 

 

B. Fractal Dimension. The fractal dimension D is a number, which characterizes fractal 

structures. This parameter can be understood as a measurement of the space filling ability by a 

fractal form. There are different definitions of D. One of them, which we use here, is the 

Hausdorff-Besicovich dimension (or self-similarity dimension) [2]. In this definition, the 

dimension D is the solution of the equation 
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where km is the number of the copies of the initiator scaled by hm and m the number of different 

scale that the fractal possesses. For the fractal described by the relations (1)-(5), we have m=2 

and s1=L/3, s2=L/e1, s3=L/e1 and s4=L/3, therefore, k1=k2=2, h1=3 and h2=6cosα. Substituting 

these parameters in (6), we obtain 
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The solution of this transcendental equation gives the value of D for a given α. 



       The total length of the wire conductor ln  is an important parameter in the antenna design. 

Usually, the longer conductor of the antenna, the less resonant frequency of the antenna can be 

achieved. It can be shown that the length ln of our modified Koch monopole for the nth iteration 

can be calculated using the following equation: 
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Table I shows the calculated values of ln and D obtained in four iterations of this fractal for 

different angles α and L=1m. 

 

TABLE 1     Variation of ln and D as a Function of n and α 

   α    D Length ln (normalized with L=1m) of the fractal  

       n=1 n=2 n=3 n=4 

  10o 1.0038 1.0051 1.0103 1.0155 1.0207 

  25o 1.0258 1.0345 1.0701 1.1070 1.1451 

  40o 1.0766 1.1018 1.2140 1.3376 1.4737 

  55o 1.1905 1.2478 1.5570 1.9429 2.4244 

  60o 1.2618 1.3333 1.7778 2.3704 3.1605 

  70o 1.5739 1.6413 2.6938 4.4212 7.2564 

 

 

III. NUMERICAL RESULTS 

       Using the IFS algorithm described above we developed a MoM code. This code is based on 

the theory of [7]. In this code, we use the pulse and Dirac’s delta functions for basis and test 



functions respectively. The parameters of the monopoles are as follows: the height L=6cm, the 

conductor diameter d=0.1mm.  The pre-fractals for iterations K0, K1, K2, K3 and K4 are analyzed 

for different anglesα. The numbers of discrete segments in each iteration K0, K1, K2, K3 and K4  

of our MoM model are 31, 36, 80, 192 and 256, respectively. 

 

A. Resonant Frequency, Radiation Resistance, and Efficiency. In order to verify the developed 

algorithm, we compare our calculations for the conventional Koch monopole (α=60°) with 

numerical results obtained in [4]. The maximum difference between our results and those in [4] 

for K0 to K4 for the first resonant frequency is 2.6% and for the radiation resistance 1.5%. Notice 

that the radiation resistance considered here is the real part of the input impedance Zin of the 

lossless antenna in the first resonant frequency. In this resonance, the imaginary part of the Zin is 

null, i.e. Xin=0. 

       In the Figures 3a and 3b, we give the normalized lengths of the antenna L/λ (λ is the 

wavelength) versus iteration number n with α as a parameter for the first and the second 

resonance, respectively. Figure 4a exhibits the variation of the radiation resistance Rr and Figure 

4b shows the efficiency of these antennas at the first resonance. We can see from these graphics 

that when the angle α or, equivalently, the dimension D is increased (Table I), the resonant 

frequencies become smaller. We also observe that each curve in Figure 3a tends asymptotically to 

a determined limit. For the curve with α=70°, we obtain for K4 the reduction in the fundamental 

resonance frequency of approximately 68% in comparison with the conventional monopole of the 

same height L. The radiation resistance and efficiency of these monopoles are reduced 

approximately to 4 Ohms and 50%, respectively (Figures 4a and 4b). 

 



B. Input Impedance. The input impedance Zin=Rin+jXin of the first four iterations for the modified 

Koch monopole with α=40° and α=70° are shown in Figures 5 and 6, respectively. One can see 

that the frequency dependence of Zin of the monopoles with α=40° (Figure 5) is relatively 

independent of n. In contrast to this, the frequency dependence of the input impedance of the 

monopoles with α=70° has very large dependence of n. In general, the variation of Zin in respect 

the frequency becomes greater with increasing α or n. 

       The presented results show that the reduction of the resonant frequency is accompanied by a 

reduction of the bandwidths of the antennas. Notice that it is a common feature of fractal 

antennas. 

 

C. Current Distribution. Figures 7a and 7b show the current distribution for the Koch monopoles 

with α=70o.  In these figures, the normalized current magnitudes In along the conductor for the 

first (Figure 7a) and second (Figure 7b) resonance are plotted. The horizontal axis in these figures 

is the normalized length l/L along the conductor and l/L=0 is on the top of the antenna (superior 

extremity). The resonant values of the L/λ used for calculations are given in Figure 3. 

       From Figure 7, we can observe also that the current distributions at the first and second 

resonance are similar to those of the conventional monopole (it corresponds to K0 in Figure 7) 

with sinusoidal distribution. 

 

D. Radiation Patterns. The radiation patterns for the planes xz and yz (see the orientation of the 

coordinate system in Figure 1) of the analyzed antennas for the angles α=40° and α=70° and 

fourth iteration (K4) are shown in Figure 8. These figures present the diagrams for the second 

resonance. For the first resonance, these Koch monopoles possess diagrams similar to those of 



the monopole K0, therefore these diagrams are not shown here. On the diagrams of Figure 8, the 

co- and cross- polarizations are relative to the electric field components in the far zone Eθ and 

Eφ, respectively.  

The graphics show that the antenna with α=70° has a considerable radiation in the vertical 

z-direction. This is due to the fact that some sections of the antenna are oriented almost parallel to 

the horizontal plane. In spite of the geometrical symmetry of our fractals with respect to their mid 

points, the horizontal currents with opposite directions in the symmetric sections have different 

values. Therefore, the radiations of these sections do not compensate each other.  

       The cross-polarization for the antenna with α=70° is larger then that for the antenna with 

α=40°. The co-polarization radiation patterns in the plane yz for all the monopoles for any 

frequency have the null value in the direction z. This is because the monopole fractals lie in the 

plane xz producing the electric field components in the far zone only in this plane. Our 

simulations show also that all the analyzed antennas have practically isotropic radiation patterns 

in the horizontal plane xy. 

 

IV. CONCLUSIONS 

       A version of the Koch antennas has been considered in this work theoretically. The modified 

Koch monopoles were constructed by changing the angle α of the generator and preserving the 

values of s1=s4 equal to one third of the total length L (Figure 1) and scaling the values of s2=s3. It 

was shown that the dimensions of the antennas can be reduced by choosing the angle α>60o 

(α=60o for the conventional Koch fractal). For the angle α=70o, the reduction of the first resonant 

frequency is about 68% in comparison with the straight monopole (for the conventional Koch 

monopole this value is 44%). The modified Koch antennas possess lower impedance bandwidth, 



lower radiation resistance and lower efficiency as compared with the conventional Koch 

monopoles. As to the radiation pattern, the modification of the Koch antennas does not lead to a 

significant change at the first resonance. Some changes of the radiation patterns have been 

observed at the second resonance regime of the modified antennas. 
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Figure 1    Curves correspondent to the 4 first iterations of the Koch fractal. The monopoles K0 and K1 are 
initiator and generator, respectively. 
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Figure 2    Modified Koch monopoles.  

a Monopoles with α=400 

b Monopoles with α=700 
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Figure 3    Normalized length L/λ of Koch monopoles as a function of α and n. 

a First resonance 

b Second resonance 
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Figure 4    Radiation resistance Rr and efficiency of Koch monopoles as a function of α and n. These 

parameters were calculated at the first resonance. 

a Radiation resistance 

b Efficiency 



 

         

 

Figure 5    Input impedance for the Koch monopoles with α =40o. 
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Figure 6    Input impedances for the Koch monopoles with α =70o. 

a K1 

b K2 

c K3 

d K4 
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Figure 7    Current distribution for the Koch monopoles with α =70o. 

a First resonance 

b Second resonance 
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Figure 8    Radiation patterns for the Koch monopoles with α =40o and α =70o at the second resonance 

and fourth iteration (K4). 


