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ABSTRACT: Fractal antennas are characterized by their special geometric characteristics
which allow a reduction of the antenna dimensions. In this work, we analyze the fractal
parameters and the radiative properties of modified Koch monopoles. The geometries of the
antennas are obtained by an ad hoc Iterative Function System algorithm for fractal curves
generation. Using the Method of Moments for numerical calculations we analyze the influence of
the antenna geometry on the resonant frequency, current, efficiency, input impedance and

radiation pattern.
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I. INTRODUCTION

Miniaturization of antennas is one of the trends in modern communications systems [1]. One
of the techniques used to decrease the antenna’s dimensions is application of fractal geometries
[2]. The Koch monopoles are fractal linear antennas which have the geometry of the Koch
curves. These antennas can be for example, vertical arrangements mounted above a ground plane.
Figure 1 shows four iterations of this fractal. The radiation properties of these monopoles are
discussed in [3-6]. The reduction of the resonant frequency as a function of the number of
iterations converges asymptotically to the limit around 44% [3]. For the conventional Koch
curve, the angle « (which is called the indentation angle) in Figure 1 is 60° and the parameters s;
are equal, i.e. s;=5,=53=54.

In this paper, we investigate another variant of the Koch monopoles with dimensions smaller
then the conventional Koch monopoles. In our modified Koch fractals, we fix the values s,=s4
equal to one third of the total height L (Figure 1) and change the angle « scaling the values of
s,=s3 in order to preserve the height L constant for all iterations. This leads to a change of the
geometry and of the fractal dimension. An ad hoc Iterative Function System (IFS) algorithm is
used to model the antenna's geometry. For numerical calculations of the input impedance,
resonant frequency, efficiency, current along the conductor and radiation pattern we use the

Method of Moments (MoM) [7].

II. FRACTAL DESCRIPTION
There is a method to produce the fractals called initiator-generator construction [2]. In
this method, one begins with a specified initiator, and a generator is applied repeatedly in a lower

scale to form the fractals. In Figure 1, for example, Ky is the initiator with the length L, and K is



the generator. Below, we describe the ad hoc IFS algorithm, which is used to obtain the modified

Koch fractals and show the geometrical properties of these fractals.

A. IFS Algorithm. The initiator with =0° corresponds to the straight monopole. In order to
construct the generator, we apply the four affinity transformations W, W,, W5 and W, at the
points that define the initiator’s curve and join the four obtained segments. These four
transformations can be applied successively to construct the monopoles K, K, ..., K,. The

procedure can be represented symbolically by
4
P

where 7 is the nth fractal iteration. Considering the plane xz (Figure 1) and supposing that Ky is
on the axis +z with one of their extremities at the origin, the transformations are defined by the

following expressions:
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where e;=6cosc. These formulas are a generalization of the known ones for the conventional
Koch fractal. Thus, the conventional Koch monopole can be considered as a particular case of our
monopoles with &=60°. Figure 2 shows four iterations of the modified Koch fractals for a=40°

and a=70°.

B. Fractal Dimension. The fractal dimension D is a number, which characterizes fractal
structures. This parameter can be understood as a measurement of the space filling ability by a
fractal form. There are different definitions of D. One of them, which we use here, is the
Hausdorff-Besicovich dimension (or self-similarity dimension) [2]. In this definition, the

dimension D is the solution of the equation
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where £, is the number of the copies of the initiator scaled by /4, and m the number of different
scale that the fractal possesses. For the fractal described by the relations (1)-(5), we have m=2
and s,=L/3, s)=L/e|, s;=L/e; and s,=L/3, therefore, ki;=k,=2, h1=3 and h,=6cosc. Substituting

these parameters in (6), we obtain
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The solution of this transcendental equation gives the value of D for a given «.




The total length of the wire conductor /, is an important parameter in the antenna design.
Usually, the longer conductor of the antenna, the less resonant frequency of the antenna can be
achieved. It can be shown that the length /, of our modified Koch monopole for the nth iteration

can be calculated using the following equation:
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Table I shows the calculated values of /, and D obtained in four iterations of this fractal for

different angles ovand L=1m.

TABLE 1 Variation of In and D as a Function of n and

o D Length [, (normalized with L=1m) of the fractal
n=1 n=2 n=3 n=4
10° 1.0038 1.0051 1.0103 1.0155 1.0207
25° 1.0258 1.0345 1.0701 1.1070 1.1451
40° 1.0766 1.1018 1.2140 1.3376 1.4737
55° 1.1905 1.2478 1.5570 1.9429 2.4244
60° 1.2618 1.3333 1.7778 2.3704 3.1605
70° 1.5739 1.6413 2.6938 4.4212 7.2564
III. NUMERICAL RESULTS

Using the IFS algorithm described above we developed a MoM code. This code is based on

the theory of [7]. In this code, we use the pulse and Dirac’s delta functions for basis and test



functions respectively. The parameters of the monopoles are as follows: the height L=6cm, the
conductor diameter d=0.1mm. The pre-fractals for iterations Ky, K;, K;, K5 and K4 are analyzed
for different anglesc. The numbers of discrete segments in each iteration Ky, K;, K, K3 and K4

of our MoM model are 31, 36, 80, 192 and 256, respectively.

A. Resonant Frequency, Radiation Resistance, and Efficiency. In order to verify the developed
algorithm, we compare our calculations for the conventional Koch monopole (a=60°) with
numerical results obtained in [4]. The maximum difference between our results and those in [4]
for Ky to K4 for the first resonant frequency is 2.6% and for the radiation resistance 1.5%. Notice
that the radiation resistance considered here is the real part of the input impedance Z;, of the
lossless antenna in the first resonant frequency. In this resonance, the imaginary part of the Z;, is
null, i.e. X;,=0.

In the Figures 3a and 3b, we give the normalized lengths of the antenna L/A (A is the
wavelength) versus iteration number n with ¢ as a parameter for the first and the second
resonance, respectively. Figure 4a exhibits the variation of the radiation resistance R, and Figure
4b shows the efficiency of these antennas at the first resonance. We can see from these graphics
that when the angle « or, equivalently, the dimension D is increased (Table I), the resonant
frequencies become smaller. We also observe that each curve in Figure 3a tends asymptotically to
a determined limit. For the curve with o=70°, we obtain for K, the reduction in the fundamental
resonance frequency of approximately 68% in comparison with the conventional monopole of the
same height L. The radiation resistance and efficiency of these monopoles are reduced

approximately to 4 Ohms and 50%, respectively (Figures 4a and 4b).



B. Input Impedance. The input impedance Z;,=R;,+jX;, of the first four iterations for the modified
Koch monopole with ¢=40° and &=70° are shown in Figures 5 and 6, respectively. One can see
that the frequency dependence of Z;, of the monopoles with =40° (Figure 5) is relatively
independent of n. In contrast to this, the frequency dependence of the input impedance of the
monopoles with &=70° has very large dependence of n. In general, the variation of Z;, in respect
the frequency becomes greater with increasing « or n.

The presented results show that the reduction of the resonant frequency is accompanied by a
reduction of the bandwidths of the antennas. Notice that it is a common feature of fractal

antennas.

C. Current Distribution. Figures 7a and 7b show the current distribution for the Koch monopoles
with o=70°. In these figures, the normalized current magnitudes I, along the conductor for the
first (Figure 7a) and second (Figure 7b) resonance are plotted. The horizontal axis in these figures
is the normalized length //L along the conductor and //L=0 is on the top of the antenna (superior
extremity). The resonant values of the L/A used for calculations are given in Figure 3.

From Figure 7, we can observe also that the current distributions at the first and second
resonance are similar to those of the conventional monopole (it corresponds to Ky in Figure 7)

with sinusoidal distribution.

D. Radiation Patterns. The radiation patterns for the planes xz and yz (see the orientation of the
coordinate system in Figure 1) of the analyzed antennas for the angles a=40° and &=70° and
fourth iteration (K4) are shown in Figure 8. These figures present the diagrams for the second

resonance. For the first resonance, these Koch monopoles possess diagrams similar to those of



the monopole Ky, therefore these diagrams are not shown here. On the diagrams of Figure 8, the
co- and cross- polarizations are relative to the electric field components in the far zone Eyand
E 4, respectively.

The graphics show that the antenna with &=70° has a considerable radiation in the vertical
z-direction. This is due to the fact that some sections of the antenna are oriented almost parallel to
the horizontal plane. In spite of the geometrical symmetry of our fractals with respect to their mid
points, the horizontal currents with opposite directions in the symmetric sections have different
values. Therefore, the radiations of these sections do not compensate each other.

The cross-polarization for the antenna with =70° is larger then that for the antenna with
a=40°. The co-polarization radiation patterns in the plane yz for all the monopoles for any
frequency have the null value in the direction z. This is because the monopole fractals lie in the
plane xz producing the electric field components in the far zone only in this plane. Our
simulations show also that all the analyzed antennas have practically isotropic radiation patterns

in the horizontal plane xy.

IV. CONCLUSIONS

A version of the Koch antennas has been considered in this work theoretically. The modified
Koch monopoles were constructed by changing the angle « of the generator and preserving the
values of s;=s, equal to one third of the total length L (Figure 1) and scaling the values of s,=s;. It
was shown that the dimensions of the antennas can be reduced by choosing the angle a>60°
(0=60° for the conventional Koch fractal). For the angle &=70°, the reduction of the first resonant
frequency is about 68% in comparison with the straight monopole (for the conventional Koch

monopole this value is 44%). The modified Koch antennas possess lower impedance bandwidth,



lower radiation resistance and lower efficiency as compared with the conventional Koch
monopoles. As to the radiation pattern, the modification of the Koch antennas does not lead to a
significant change at the first resonance. Some changes of the radiation patterns have been

observed at the second resonance regime of the modified antennas.
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Figure 1 Curves correspondent to the 4 first iterations of the Koch fractal. The monopoles K, and K are
initiator and generator, respectively.
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Figure 2 Modified Koch monopoles.
a Monopoles with a=40°

b Monopoles with a=70°
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Figure 3 Normalized length L/A of Koch monopoles as a function of ¢rand n.
a First resonance

b Second resonance
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Figure 4  Radiation resistance R, and efficiency of Koch monopoles as a function of « and n. These
parameters were calculated at the first resonance.
a Radiation resistance

b Efficiency
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Figure 5 Input impedance for the Koch monopoles with o =40°.
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Figure 6 Input impedances for the Koch monopoles with z=70°.
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Figure 7 Current distribution for the Koch monopoles with oz =70°.
a First resonance
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Figure 8 Radiation patterns for the Koch monopoles with &z =40° and « =70° at the second resonance

and fourth iteration (Ky).



