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Abstract

This paper presents for the first time a full-vectorial analysis of optical vortex propagation in anisotropic cubic-quintic (CQ) non-lin-
ear medium. The purpose is to investigate the energy transfer mechanism and stability between orthogonal field components and how
they are affected by the presence of material anisotropy in CQ materials. The numerical simulations were carried out via a three-dimen-
sional finite difference based beam propagation method (3D-FD-BPM) which is capable of handling variations in any of the permittivity
tensor components. Therefore, in this work we allowed all tensor components to vary independently and simulate vortex propagation for
distances several times longer than the diffraction length. We expect that this work can provide new and important information regarding
the behavior of these objects that may become valuable for the design of new photonic devices.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of phase singularities in wave propagation has
attracted a great deal of attention of the scientific commu-
nity since they were first reported in 1974 by Nye and Berry
[1]. At the singularity point the phase of the wave is not
defined and its amplitude vanishes. In light waves, the
phase singularity gives rise to a fascinating object called
optical vortex, experimentally investigated in non-linear
optics in the pioneering work by Swartzlander et al. [2].
The first theoretical study on this subject, by its turn, is
due to Snyder et al. [3]. The familiar doughnut (ring) shape
of these objects is a consequence of its internal vorticity
which creates a dark center inside it [4]. Readers interested
in a more detailed description of optical vortex characteris-
tics are referred to [5,6] and references therein.

One major issue in bright vortex soliton propagation is
its instability. It is well known that this object tends to
become unstable against azimuthal perturbations [4,7].
One way of preventing this instability from occurring is
through the competition between a focusing v(2) non-line-
arity and a self-defocusing v(3) non-linearity, as suggested
by [8]. Another approach consists in adopting an optical
model based on the competition between cubic and quintic
non-linearities (it is noteworthy mentioning that the first
stable vortex soliton was observed for this model [9–11]).
Stability issues concerning isotropic cubic-quintic (CQ)
models have been successfully addressed in [12,13], and
was extended even further by Mihalache et al. [14] with
the inclusion of self-phase modulation, cross-phase modu-
lation, and four-wave mixing effects in the cubic part of the
model. Additionally, by assuming CQ materials as isotro-
pic allows one to obtain vortex solitons with spin values
as high as five [15]. It should be mentioned at this point
that stable two-dimensional vortex solitons can also be
formed in dissipative systems described by a complex CQ
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Ginzburg–Landau equation according to Crasovan et al.
[16], where it is shown that both non-spinning and spiral
solitons are remarkably stable against azimuthal perturba-
tions. Another issue of growing interest for both theoretical
and experimental studies is the possibility of forming stable
three-dimensional (3D) spatiotemporal vortex solitons in
both conservative and dissipative non-linear optical media.
It has been demonstrated by Mihalache et al. [17–19] that
3D vortex tori can be stable under certain conditions in
media with competing optical non-linearities of the qua-
dratic-cubic or cubic-quintic types. In any case, all CQ
models currently available in the literature assume the
CQ non-linear media as isotropic.

The effect of material anisotropy in vortex propagation
has been investigated quite successfully for photorefractive
materials (which are known for producing unstable vortex
propagation) [5,11,20]. Therefore, being able to simulate
either isotropic or anisotropic CQ non-linear media may
prove to be quite useful for a complete understanding of
the propagation dynamics of this fascinating non-linear
object. Since optical vortices can be utilized to induce
waveguide channels in a bulk non-linear medium, an inter-
esting application would be the possibility of inducing sta-
ble, directionable, and non-diffractive waveguides in order
to allow the guidance of other beams in a steerable manner
[21]. In addition to including anisotropy, one should also
include the vectorial properties of light propagation, since
it might play an important role in the design of future
polarization sensitive devices.

In this paper, we demonstrate, for the first time to our
knowledge, a full-vectorial approach for the simulation of
optical vortex propagation in anisotropic CQ non-linear
media. This model, originally introduced by Alcantara
et al. [22] to simulate the propagation of light condensates
in these materials, is a finite difference beam propagation
method (FD-BPM) that solves the full-vectorial Helmholtz
equation. We consider different variations of the anisot-
ropy for all three axis of the permittivity tensor so that
the stability issue for this particular medium can be
addressed.

This paper is organized as follows. In Section 2 we intro-
duce the full-vectorial Helmholtz equation for the model-
ing of anisotropic CQ non-linear media. In Section 3 we
describe the optical properties of this medium and investi-
gate how small variations of the permittivity tensor ele-
ments affect the stability of vortex propagation. Also
discussed in this section is how the anisotropy, particularly
along the z-axis, affects the energy distribution between
orthogonal field components. Finally, Section 4 presents
some concluding remarks for this paper.

2. Model

The formalism employed to simulate these objects is the
full-vectorial Helmholtz equation for the electric field
Eðx; y; zÞ, which reads [22]

k2
0�eEþr2E ¼ rðr � EÞ; ð1Þ

where k0 = 2p/k0 is the propagation constant in vacuum.
The dielectric relative permittivity tensor is given by
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where the double overbar denotes that the permittivity is
being considered in a tensorial form. Expanding (1) for
the transversal field components, results
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As one can observe, Eqs. (3) and (4) clearly show the
coupling between all three electric field components. Solv-
ing Eqs. (3) and (4) directly is quite a challenging task,
but these equations can be recast in terms of transverse
field components only (Ex and Ey) in a lengthy, but
straightforward manner. In order to do so, first one needs
to expand the Gauss’ law ðr � ð�eEÞ ¼ 0Þ for the Ez com-
ponent and to assume slow variation of ezz along the
propagation axis, so that longitudinal derivatives related
to this quantity can be neglected. As a result, the follow-
ing equation for the longitudinal component can be
obtained.

oEz

oz
¼ � 1

ezz

o

ox
ðexxExÞ þ

o

oy
ðeyyEyÞ

� �
: ð5Þ

Next, by substituting (5) into (3)-(4) one ends up with a
new coupled system involving Ex and Ey, as expected. Once
the new coupled system has been obtained, the following
step consists in applying the slowly varying envelope
approximation which consists in redefining the field ampli-
tude as

Eðx; y; zÞ ¼ Wðx; y; zÞ expð�jjzÞ;

where j = k0n0 and n0 is the reference refractive index. This
field amplitude is then substituted back into the new cou-
pled system, and the resulting equations are reduced to a
set of coupled parabolic equations via paraxial approxima-
tion, i.e., jo2W=oz2j � 2jjoW=ozj. As a result, one finally
obtains

k2
0ðexx � n2

0ÞWx þ F xWx þ DyWx � 2jj
oWx

oz
¼ P xyWy ; ð6Þ

k2
0ðeyy � n2

0ÞWy þ DxWy þ F yWy � 2jj
oWy

oz
¼ P yxWx; ð7Þ

where
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The electric permittivity tensor components in the CQ non-
linear media are assumed to have the following electric field
dependence (Kerr-type medium with saturation):

euu ¼ eL
uu þ a2jWj2 � a4jWj4;

where uu stands for xx, yy or zz, superscript L indicates the
linear relative permittivity, and jWj is defined as

jWj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jWxj2 þ jWy j2 þ jWzj2

q
; ð8Þ

where Wz is obtained from Gauss’ law. The finite difference
discretization of (6) and (7) along the z-axis follows that of
[22], and will be omitted here. A transparent boundary con-
dition is also implemented at the edges of the computa-
tional domain in order to suppress unwanted reflections.

3. Numerical results and discussions

In cubic-quintic non-linear materials the refractive index
dependence with respect to field intensity is well character-
ized by a cubic focusing term (owed to optical Kerr effect)
and a quintic defocusing term. The important characteristic
of these competing non-linearity effects is the possibility of
producing stable beam propagation for a given optical
intensity. Promising candidates for this application are
chalcogenide glasses, as well pointed out by [23,24].

The model structure investigated in this work is a bulk
non-linear medium similar to the one described in [22,23],
but we have changed the refractive index to nL = 2.5 in
order to adequate it to some of the available data for chal-
cogenide glasses [25,26]. The focusing and defocusing non-
linear coefficients are a2 = 1.89 · 10�18 m2/V2 and a4 =
1.64 · 10�34 m4/V4, respectively. The simulation parame-
ters adopted are: wavelength k = 1.064 lm, transverse step
size dx = dy = 0.5 lm, longitudinal step size dz = 0.2 lm,
and number of discretization cells Nx = Ny = 300. The
input field is assumed as a Gaussian distribution illuminat-
ing an appropriate phase mask [23]:

w ¼ A exp �ðx
2 þ y2Þ
2x2

0

� �
eiqh;

where A = 107.381116 · 106 V/m, x0 = 11 lm, q is the
topological charge, and h = tan�1(y/x). The amplitude A

is chosen, so that the contribution of the focusing and
defocusing non-linear coefficients to the refractive index

cancels each other ðA ¼
ffiffiffiffiffiffiffiffiffiffiffi
a2=a4

p
Þ, which corresponds to a

stable vortex propagation in a linear case. The excitation
is applied to the Ex component, while Ey = Ez = 0 at
z = 0. The topological charge assumed in all simulations
is q = 1.

The simulations indicate that the vortex propagation is
quite stable if the anisotropy occurs only in the x or y com-
ponent of the relative permittivity tensor, ��e. In fact, we
have simulated long propagation distances for both cases,
allowing the tensor components exx and eyy to vary inde-
pendently from 6.25 (n = 2.5) to 6.890625 (n = 2.625),
which represents a variation of up to 5% in the correspond-
ing refractive index. Therefore, for every variation of the
tensor components a new simulation run was carried out,
with the tensor values kept constants, even in the longitu-
dinal direction. It is worth mentioning that the vortex ring
for the excited component (Ex in these cases) is not per-
turbed by the anisotropy introduced in the material even
when long propagation distances are required. This behav-
ior prevents it from getting unstable, and constitutes an
important parameter for the designing of optical devices.
As an example, the intensity isosurface for Ex and the
intensity versus propagation distance for Ex and Ey are
shown in Fig. 1a and b, respectively. The intensities are
obtained by solving IuðzÞ ¼

R R
jEuðx; y; zÞj2 dxdy, with

u = x or y. It is assumed in here a strong anisotropy along
the x-axis of the tensor, that is, nxx = 2.5 + D, with
D = 0.125, and nyy = nzz = 2.5. These parameters do not
change during the simulation. The propagation distance
is 100 mm. It can be observed that after an initial accom-
modation the field intensity no longer changes as it propa-
gates, i.e., it remains confined in the induced channel
created by the vortex ring. The results also indicate that
there is no significant transfer of energy between the trans-
versal field components. In fact, in all simulations where
either nxx or nyy were allowed to vary, the intensity ratio
I = jEy/Exj2 did not show any significant variation, and
plateaus at a level approximately eight orders of magnitude
smaller than that for the x component. The result in Fig. 1a
also shows that the vortex experiences an off-center drift as
it propagates (this behavior was observed either for the iso-
tropic and anisotropic case). Off-center drifts have been
demonstrated for dark vortex solitons as a result of back-
ground gradients of phase [27,28]. In the present case, part
of the energy is also dissipated during propagation, leading
to a breaking of the cylindrical symmetry with respect to
the vortex axis [29], and consequently to an off-center drift.
It is worth mentioning that the excitation field adopted in
all simulations immediately develops a singularity in its
center since the phase is not defined in this location. Con-
sequently, a strong disturbance is verified in the field in the
early stage of propagation (z < 0.1 mm). After this dis-
tance, the field distribution assumes its familiar doughnut
shape helped by the combined effects of focusing and defo-
cusing non-linearities. This behavior is not seen in the iso-
surfaces due to the resolution adopted in generating these
figures.
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The smooth behavior described above is no longer
observed when the anisotropy is introduced in the z com-
ponent of the permittivity tensor, i.e., ezz. As will become
clear next, the vortex soliton becomes unstable for any
value of anisotropy for this particular tensor component.
In order to demonstrate the drastic changes in the vortex
stability, we increased the propagation distance to
300 mm so that the dynamics of energy transfer between
the transversal field components can be better visualized.
In the present case, the tensor components exx = eyy = 6.25
(nxx = nyy = 2.5), while ezz is allowed to vary from 6.25
(nz = 2.5) up to 6.890625 (nzz = 2.625, corresponding to a
refractive index variation of 5%). Observe that a new sim-
ulation run is carried out for every value of ezz, with all ten-
sor elements kept fixed.

One important aspect, common to all cases where only
nzz varies, is the splitting of the vortex ring. Splitting of
the vortex can in fact be observed for different model prob-
lems where instabilities play a significant role, as described
in [30]. In the present case, this phenomenon occurs even
for low anisotropy values, affecting severely the stability
of these objects. As an example, consider the case where
nzz = 2.5 + D, where D = 0.05 (2% refractive index varia-
tion). Isosurfaces plots illustrating the intensity evolution
for the transversal field components are shown in Fig. 2
for a propagation distance of 100 mm. The splitting of
the vortex ring can clearly be seen at z � 40 mm and, as
it starts, the energy exchange between the transversal field
components increases rapidly, with an oscillatory behavior
as one would expect. The splitting is caused by a symmetry
breaking due to the anisotropy. It is worthy mentioning
that the symmetry breaking begins with significant inten-
sity oscillations along the top of the ring which increase
and dramatically deform the ring as the propagation pro-
gresses. In addition, there is also a dramatic energy
exchange between field components (Ex and Ey), each
one contributing differently to the local refractive index
along the propagation, favoring modulational instabilities.

Once the splitting occurs, the resulting solution forms a
bound composite state that stabilizes each other for a cer-
tain distance, forming a dipole-mode soliton [31]. In fact, it
remains stationary for tens of diffraction lengths, in the
same fashion as described in [31–33]. During the dipole-
mode soliton formation the intensity of both field compo-
nents becomes quite significant by virtue of anisotropy,
and strongly interacts with each other (this will become
clear later on when we discuss the energy exchange mecha-
nism between field components). Observe that the intensity
maxima of each field component occur at the position of
the minima of the other due field orthogonality. Conse-
quently, their individual contribution to the local refractive
index causes a trapping of the dipole-mode beam as seem
by each component, preventing it from flying off tangen-
tially. It should also be pointed out that both components
present a consistent oscillatory behavior during this stage,
very similar to the one reported in [32]. Eventually, the
symmetry breaking introduced by the anisotropy gives rise
to numerical noise that causes the dipole-mode soliton to
break apart and repel each other. This process starts at

Fig. 2. Isosurface of the field intensity evolution in an anisotropic CQ
nonlinear material with nxx = nyy = 2.5 and nzz = 2.5 + D, where D = 0.05.
(a) Ex component, and (b) Ey component (this isosurface was rotated to
help visualization).
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Fig. 1. Vortex propagation for an anisotropic CQ non-linear material with nyy = nzz = 2.5, and nxx = 2.5 + D, with D = 0.125. (a) Intensity isosurface for
the Ex component, showing a stable vortex propagation and (b) field intensity versus propagation distance for the transverse components Ex (triangles)
and Ey (squares). The propagation distance is z = 100 mm.
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z � 140 mm (observe the Ey component). The breaking-up
of the structure becomes more dramatic at z � 280 mm,
ending up in two solitons being ejected tangentially. This
process can be observed in Fig. 3, which shows the vortex
evolution at different positions along the propagation
direction.

By increasing the anisotropy even further, i.e.,
nzz = 2.5 + D, where D = 0.125, the energy exchange, and
consequently the instability arising from symmetry break-
ing, increases more drastically. As a result, the splitting
of the vortex ring starts much earlier than the previous case
(at z � 5 mm, less than a diffraction length). Even for this
extreme situation, a bound state is also formed after the
splitting of the ring, stabilizing each other for more than
100 mm. Afterwards the noise produced instability sets in
and eventually breaks-up the structure, and two solitons
are ejected. The dynamics of the composite structure
break-up can be verified in Fig. 4.

Next, we investigate the energy exchange mechanism
between the transversal field components for different values
of the permittivity tensor ezz or, more appropriately, nzz. The
results are summarized in Fig. 5 and, as one can see, the effect
of the longitudinal anisotropy on the energy transfer mecha-
nism can be quite dramatic. In all cases the Ez component is
omitted for the sake of clarity, but it can be easily obtained
via Gauss’ law as stated previously. It is noteworthy men-

tioning that the sudden drop of the intensity curves only indi-
cates that the solitons have actually left the computational
window. The arrows in these figures indicate the point where
the rupture of the vortex becomes inevitable due to noise pro-
duced instability. Prior to the dipole-mode soliton break-up,
there is a consistent energy transfer between the two induced
channels, observed for all cases studied here. The reason for
this to occur comes from the phase matching condition for
the field in each induced channel. This phase matching con-
dition is soon destroyed once a significant amount of energy
is transferred from one channel to the other. Since the local
refractive index depends strongly on the field intensity, each
channel will produce a different local refractive index and,
consequently, different local propagation constants. The
result of this intensity unbalancing is the repulsion of the sol-
itons, which fly off tangentially, as shown in Figs. 3 and 4.

The impact of the results shown in this work, particu-
larly those in Fig. 5, can be quite significant if one is inter-
ested in designing practical optical devices with anisotropic
CQ materials. Anisotropy, if properly controlled, can be a
useful additional degree of freedom in the design of polar-
ization sensitive structures, for instance. Even though we
have not shown here results for 1% variation in nzz (which
was due only to the computational time required, since the
propagation distance would be significantly longer), we
strongly believe that a similar pattern would be observed.

Fig. 3. Vortex propagation in an anisotropic CQ non-linear material, with nxx = nyy = 2.5 and nzz = 2.5 + D, where D = 0.05 (2% variation). The upper
and lower rows of each sequence represent the intensity distributions for the Ex and Ey components, respectively. The points were the fields were sampled
are indicated in the figure (z is in mm).
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The stationary behavior of the dipole-mode solitons (for
tens of diffraction lengths) appears to be a good candidate
structure for the design of reconfigurable waveguides, as
suggested by [21].

This study also paves the way for the inclusion of an
even more striking degree of freedom in the design of

advanced structures, namely the magnetooptic effect. This
effect, together with anisotropy, can be explored in the
design of non-reciprocal devices, or as a trigger for the
breaking-up of the vortex structure at a given point along
the propagation. We expect to address these aspects in
future publications.

Fig. 4. Vortex propagation in an anisotropic CQ non-linear material, with nxx = nyy = 2.5 and nzz = 2.5 + D, where D = 0.125 (5% variation). The upper
and lower rows represent the intensity distribution for the Ex and Ey.
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Fig. 5. Field intensity for the transverse components Ex (squares) and Ey (triangles), with nxx = nyy = 2.5, and nzz = 2.5 + D. (a) D = 0.05, (b) D = 0.075,
(c) D = 0.1, and (d) D = 0.125. The arrows indicate the point where the rupture of the vortex begins to occur. The intensity drops to zero when the vortices
leave the computational window.
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4. Conclusion

This paper presented for the first time a full-vectorial
analysis of optical vortex propagation in anisotropic
cubic-quintic non-linear medium. The purpose was to
investigate the energy transfer mechanism and the stability
between orthogonal field components and how they are
affected by the presence of anisotropy in this material.
The numerical simulations were carried out by means of
a three-dimensional finite difference based beam propaga-
tion method (3D-FD-BPM). In these simulations all ele-
ments of the permittivity tensor were allowed to vary
(one at a time) so that the stability of vortex propagation
could be verified. The anisotropic CQ non-linear media
was insensitive to variations in the transverse tensor ele-
ments, namely nxx and nyy. The same was no longer true
when the longitudinal component, nzz, was varied. There-
fore, we carried out a stability analysis by allowing nzz to
vary positively from 2% to 5% (we did not check for 1%
variation due to the long computational time required,
but we strongly believe the same behavior would still be
observed). The effect on the vortex stability was dramatic,
even for the lowest variation on nzz. We observed that small
variations in nzz, besides contributing to the energy transfer
between transversal field components, also caused the split-
ting of the vortex ring giving rise to a dipole-mode soliton
which propagated in a stationary fashion for several dif-
fraction lengths. The rupture of the dipole-mode eventually
occurred and two solitons were then ejected tangentially.

Finally, we believe this work provided new and impor-
tant information regarding the behavior of these objects
that may prove to be quite useful for the design of new
photonic devices.
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