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Abstract

One of the main factors for the knowledge discovery success is related to the comprehensibility of the patterns discov-
ered by applying data mining techniques. Amongst which we can point out the Bayesian networks as one of the most
prominent when considering the easiness of knowledge interpretation achieved. Bayesian networks, however, present lim-
itations and disadvantages regarding their use and applicability. This paper presents an extension for the improvement of
Bayesian networks, treating aspects such as performance, as well as interpretability and use of their results; incorporating
genetic algorithms in the model, multivariate regression for structure learning and temporal aspects using Markov chains.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Bayesian networks stand as one of the best computational intelligence techniques among the existing par-
adigms, particularly due to their exceptional analytical properties to represent domains. However, just like any
other computational algorithm, they also present limitations and disadvantages, regarding their use as well as
their applicability.

Among the ‘‘restrictions’’ presented by the Bayesian networks we can point out: the difficulty to correlate
variables considering the time factor and difficulty to establish which is the optimum combination of states for
given variables that would achieve a certain requirement (desirable state for a certain variable of the domain).
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This paper deals with the mentioned problems by: incorporating a stochastic model such as associating
Markov chains to the Bayesian networks; and by combining genetic algorithms with the networks obtained
from the data. It also proposes a new and optimized method for learning the Bayesian network graphical rep-
resentation, in which the creation of the network and the correlation analysis of the variables are conducted
through multivariate regressions.

The methods that will be presented here treat the optimization of the Bayesian networks as a whole, consid-
ering the performance as well as quality and improvement of the results obtained. This improvement of the results
is conducted right from the initial step, the assembly of the network from the data. It is followed with a comple-
ment for manipulation and analysis by investigating an optimum combinatory search according to the existing
attributes. Then finally the predictive analysis of the network’s behavior throughout the time is obtained.

The paper is organized as follows: in Section 2, the basic concepts of KDD (Knowledge Discovery in Data-
base), data mining and Bayesian networks are shown. In Section 3 some related works are presented. Section 4
presents a method for learning the Bayesian network structure using multivariate regression. In Section 5, the
use of genetic algorithm is presented for the discovery of the optimum combination of values for the variables
of a Bayesian network, as a mean to maximize a target variable. In Section 6 a temporal model using the con-
cepts of Markov chains is presented. The final remarks of the paper are presented in Section 7.

2. KDD, data mining and Bayesian networks

The process of knowledge discovery in database (KDD) [9] stands as a technology capable of widely coop-
erating in the search of knowledge existing in the data. Therefore, its main objective is to find valid and poten-
tially useful patterns from the data.

The extraction of knowledge from data can be seen as a process with, at least, the following steps: under-
standing of the application domain, selection and preparation of the data, data mining, evaluation of the
extracted knowledge and consolidation and use of the extracted knowledge. Once in the data mining stage,
considered the core of the KDD process, methods and algorithms are applied for the knowledge extraction
from the database.

This stage involves the creation of appropriate models representing patterns and relations identified in the
data. The results of these models, after evaluated by the analyst, specialist and/or final user, are used to predict
the values of attributes defined by the final user based on new data [9].

In this work, the computational intelligence algorithm used for data mining was based on Bayesian
networks.

A Bayesian network is composed of several nodes, where each node of the network represents a variable,
that is, an attribute of the database; arcs connecting them and whose direction implies in the relation of depen-
dency that the variable can possess over the others; and probability tables for each node.

The Bayesian networks can be seen as models that codify the probabilistic relationships between the vari-
ables that represent a given domain [32]. These models possess as components a qualitative, representation of
the dependencies between the nodes, and a quantitative (conditional probability tables of these nodes) struc-
ture, evaluating, in probabilistic terms, these dependencies [3]. Together, these components provide an efficient
representation of the joint probability distribution of the variables X of a given domain [24].

One of the major advantages of the Bayesian networks is their semantics, which facilitates, given the inher-
ent causal representation of these networks, the understanding and the decision making process for the users
of these models [3]. Basically, due to the fact that the relations between the variables of the domain can be
visualized graphically, besides providing an inference mechanism that allows quantifying, in probabilistic
terms, the effect of these relations.

A particular type of Bayesian network which we will also be using in this work (Section 5) is the Naive
Bayesian network. In a Naive Bayes, it is assumed that all the attributes of the database are mutually inde-
pendent, but being dependent of one certain father node (one of the attributes of the database, chosen as
the main one, from which the remaining attributes present a certain dependency).

The Naive Bayes stands out among the many existing classification methods as one of the simplest and
computationally more efficient; being also robust against noises in the data and irrelevant attributes [15], in
such a way that they would not influence in the probabilities of the other attributes.
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3. Background and related works

In this section, we will present some of the works presented in literature and that also served as basis as well
as comparison for the studies presented in this paper. The works are also divided here according to the fund-
aments of their approaches: whether it is based on the graphical structure learning of the network; on the
search for the best configuration, that is, the set of actions or inferences and furthermore its singular values
to achieve a specific state; or the temporal analysis for Bayesian networks.

First of all, on the matter of graphical learning, the construction of a Bayesian network involves the learning
of the network structure and the definition of the probabilities associated with its variables. This process can be
done directly with the help of experts in the studied domain or automatically, with learning algorithms, which
we will focus here. The learning algorithms can be classified as being constraint based, where the structure is
obtained by identifying the dependencies among the variables; or through a search and score of the best network
structure.

Here the search and score approach is used for the learning of the network topology. The search and score

works searching through the space of possible existing structures, starting from a graph with no arcs and add-
ing new ones, calculating a score for the given structure until no new arc can be added.

In [22] a search and score method to induce Bayesian networks is proposed, using both fuzzy systems and
genetic algorithms. It is proposed a scoring metric based on the evaluation of different quality criteria, which is
computed by the fuzzy system; using the genetic algorithm as means to search through the space of possible
structures, which, as was also pointed, has already been applied to the learning of Bayesian networks [17].

The fuzzy system uses as input metrics the Bayesian measure, the minimum description length principle
[30], Akaike information criteria [1], and the estimated classification accuracy of the network; thus providing
the quality of the network as output. The genetic algorithm is used to search the possible network structures.

Comparatives as to the algorithm performance with well-known algorithms (BayesN [21], Bayes9 [28], Tet-
rad [36] and K2 [6]), which will also be presented as comparative in Section 4, are also presented.

The use of this approach brings however some limitations such as the fact of it being sensitive to the selec-
tion of the initial population (for the genetic algorithm) as well as for the different membership functions (for
the fuzzy system).

Other recent methods implemented for the learning of the Bayesian graphical structure, usually based on
hybrid models can also be seen in [35,19,20], each with its own metric of scoring and evaluation: use of (seman-
tic) crossover and mutation operators to help the evolution process, penalty measure, and Minimum Descrip-
tion Length metric, respectively; [20] proposal however does not involve a need for a complete ordering of the
variables as input. Further use of genetic algorithms can also be seen in [10,13].

In [25] the use of a previous ordering of the variables is also studied, proposing a multi-phase approach for
the graphical learning based on the use of distinct but easy to implement algorithms, which involves a search
method for optimal parents to build the structure, followed by a method to eliminate existing cycles in the
graph and finally, an evaluation of the network using structural perturbation.

Aside from the ordering of nodes, the dataset (here we will treat only with fully observed cases) size is also an
important aspect when considering the network quality and convergence speed of the algorithm. Especially since
it is NP-hard [5], exponentially increasing the searching space with the number of variables.

A more thorough overview on the techniques and algorithms for the learning of Bayesian networks can be seen
in [4].

With regards to the optimal configuration search, we will point here the approach of using computational
intelligence algorithms as means to optimize and improve the knowledge discovery process, resulting, in many
cases, on hybrid systems. For instance, [37] uses fuzzy systems as a way to improve the Bayesian inference.

In [34] neural networks are treated to improve the backpropagation training algorithm, which, although
being one of the most popular training techniques, does not allow discriminating and identifying relevant
input variables in the model. To identify these variables would be however an important asset of information
for the researchers. Thus, genetic algorithms are implemented together with the neural network as training
alternative to extract this knowledge and overcome this deficiency of the algorithm.

In this paper, it will also be presented a hybrid optimization model, here using genetic algorithms to seek
and provide further extraction of knowledge and information from Bayesian networks. An application
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example on the domain of power systems is given. Genetic algorithm or evolutionary computing, as discussed
previously, is one of the most prominently used techniques when it comes to optimization (see [7] for a specific
use of genetic algorithms on power systems).

Finally, when it comes to temporal analysis, forecasting is accomplished in most works in literature by
means of time series analysis [12]. However, techniques such as dynamic Bayesian networks [23], hidden Mar-
kov Models [27] or Kalman filters [16] are better suited when it is desired to consider the dependences among
the variables, adding also a probabilistic reasoning. In Section 6, a distinct model for temporal analysis of
Bayesian networks is proposed for an easy modeling and inference of the observed variables.

4. Structure learning based on multiple regressions

The algorithm, implemented to induce the learning of the structures, searches for the best configuration,
amongst the space of possible structures, for the construction of a Bayesian network from the analysis of exist-
ing dependences and independences between the variables. The algorithm uses the search and score method,
analyzing all the possible graphical combinations that can be set from the variables of the domain.

The analysis for the search of the best Bayesian network that represents the domain is made through a mul-
tivariate regression [8,11,12,26,29] on the data. The heuristic of the search follows from the ordinance of the
variables, where for each attribute Xi the possible dependencies of the variable with its precedents are exam-
ined (variables parents – Pai), adding arcs between them and verifying the quality of the network created
according to its score; continuing, as follows, with the search of another attribute, that added to the previous
one(s) would increase the score of the network.

The validation of the network created by each new added arc made through regressions, that can be single
(when analyzing the relation with only one variable) or with multiple variables, as it is usually used.

This algorithm for learning of structures through multivariate regressions (Multiple Regression Structure
Learner – MRSL) attributes the score of each network through the value found by the adjusted coefficient
of each regression (R2); which is obtained as described next.

Assuming we are working with a database D with n records and i number of variables, we are searching for
the best Bayesian network structure BS for it. We denote the target variable that we are analyzing as Y, and the
k variables candidates for parents as X. The generalized formula of the regression is
Y ¼ A0 þ A1X 1 þ A2X 2 þ � � � þ AkX k þ E ð1Þ

Y ¼

Y 1

Y 2

..

.

Y n

2
66664

3
77775 ð2Þ

X ¼

1 X 11 X 12 � � � X 1k

1 X 21 X 21 � � � X 21

..

. ..
. ..

. ..
.

1 X n1 X n2 � � � X nk

2
66664

3
77775 ð3Þ
Expanding for each instance of the database in Y and X as above we have
Y 1 ¼ A0 þ A1X 11 þ A2X 12 þ � � � þ AkX 1k þ E1

Y 2 ¼ A0 þ A1X 21 þ A2X 22 þ � � � þ AkX 2k þ E2

..

. ..
. ..

. ..
. ..

. ..
.

Y n ¼ A0 þ A1X n1 þ A2X n2 þ � � � þ AkX nk þ En

ð4Þ
This way, in order to calculate the regression we need to obtain the values of the coefficients:
A ¼ A1 A2 � � � An½ �T ð5Þ
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which can be calculated according to
Table
Datab

X1

2
2
1
2
1
1
2
1
2
1

A ¼ ðX tX Þ�1 � X tY ð6Þ

With the values of A, we can then calculate the value of the regression coefficient (R2) according to
R2 ¼ AtðX tX ÞA� nY 2

yty
ð7Þ
where Y is the mean value of variable Y, and y is obtained by the subtraction of Y by Y . And thus calculating
its adjusted value by
R2 ¼ 1� ð1� R2Þ n� 1

n� k

� �
ð8Þ
In the same way, the absence of dependencies (Pai = /) for the variable in question is assigned when
obtained, for each possible relation of dependence, a value close to or below zero for R2.

Another important aspect of the proposed model is regarding the relevance of the inclusion of new vari-
ables in the dependencies model of the attribute. This analysis is made in order to verify whether or not
the inclusion of one or more arcs for the variable is indeed relevant for the model, even though with this inclu-
sion a higher R2 is obtained. The analysis of this aspect is due, in particular, to the fact of being verified during
the evaluation tests of the algorithm, that the R2 obtained for the best Pai configuration for the variable Xi

with a number of arcs x was very close to the one achieved by the best Pai configuration with a number of
arcs x + 1. The same behavior was also observed when comparing the latter with the value obtained with a
number of arcs x + 2, and so on.

In order to provide the analysis relevance to be generally applicable for datasets disregarding their sizes, the
F test, whose formula is presented below, was used:
F ¼ ðR2
I � R2

RÞ=m

ð1� R2
I Þ=ðn� kÞ

ð9Þ
where R2
U and R2

R are the R2 values obtained for the unrestricted (with the inclusion of the new variables) and
restricted (without the inclusion of the variables) regressions, respectively, and m is the number of variables
added to the model.

In order to exemplify the functioning of the algorithm, let us consider the analysis of the following model: a
database D which, for simplification purposes, is composed of 10 records and 4 attributes (Table 1), being each
one of them binary (number of possible states is 2). In fact, the number of states that each variable can assume
is irrelevant for the functioning of this algorithm; it does not influence in increasing the number of states, as it
will be proven later, in the performance of the algorithm. Besides, the algorithm allows dealing with contin-
uous variables as a whole. We also point out that, when dealing with non-numerical discrete variables, the
variables have their r states coded to integer values from 1 to r, and then onwards they are treated in the same
way by the algorithm.

The algorithm initiates the structure search with a network where all the attributes are mutually indepen-
dent, that is, there are no arcs connecting them. Given that the first attribute X1, by definition, does not pos-
1
ase example D

X2 X3 X4

1 1 1
2 1 2
1 1 2
2 1 2
1 1 1
2 2 2
2 2 2
1 2 1
2 2 2
1 2 1
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sess parents [14], the search follows immediately to the next node. The node X2 can then only possess at the
most one possible father (X1). Eq. (8) is then used to verify whether the addition of the arc connecting the two
variables is relevant or not (i.e. the R2 obtained presents a value close to or below zero) for the structure of the
network. Here the variable X2 becomes Y (2) and only one regression is made, in this case for the node X1,
obtaining an R2 of 0.28. According to statistical estimates, an R2 value as the one obtained is not significantly
enough to indicate the representation of a domain, however, as what it is primordially searched here is the
existence of the dependence relations among the variables of the domain (as direct or indirect), such values
are assumed here. This way, only the values that, as described previously, are smaller or very close to zero
are not accepted.

Continuing the search, we move to X3, initially verifying the possible connections with only one individual
arc, that is, with X1 and then with X2, obtaining R2 ¼ �0:08 on both. As the results are negative values, no arc
is created at this moment. Then the regression is conducted considering as parents both X1 and X2, which
resulted in a R2 of �0.02857. Once those values for the correlations between the node X3 and the other vari-
ables had resulted only in negative values, no relation of dependency is assumed (number of parents is zero)
for X3, and, thus, no arc is directed to it.

The same process follows for X4, initially testing its connectivity with only one arc, obtaining as results of
the regressions for, X1, X2 and X3 the values 0.0625, 0.625 and �0.125, respectively; resulting in the creation of
an arc between X2 and X4. Considering the existing combinations of size two the following results can be
obtained: R2

X 1;X 2
¼ 0:584821, R2

X 1;X 3
¼ �0:0625 and R2

X 2;X 3
¼ 0:607143. As the higher R2 found for X3 consider-

ing the existence of two parents – X2 and X3 – is smaller than the value considering only one ðR2
X 2
> R2

X 2;X 3
Þ,

only the arc connecting X2 is kept, not adding a new one. Finally, the regression considering all the preceding
attributes of X4 is made, resulting in a R2 of 0.59375; thus again, as R2

X 2
> R2

X 1;X 2;X 3
, no arc is added.

The resulting Bayesian network obtained by the MRSL for the base D is presented in Fig. 1.
The MRSL algorithm acts in an optimized way, with respect to performance, when compared with other

existing learning algorithms in the literature. It works directly without considering the number of states of the
variables, not suffering from any combinatory impact that can be implied by them in the search and score of
the best network structure.

However, in order to optimize even further the performance of the algorithm some considerations and heu-
ristics can also be adopted. In the very first iterations of each variable, a control can be included in order to
decrease the combinatory space to be covered and, consequentially its execution time.

Firstly, from the values obtained in the correlations of degree one (number of parents equals to one) of the
variable Xi with its precedents ðR2

X 1
; . . . ;R2

X i�1
Þ, it is already possible to observe which, amongst the variables,

presents a higher level of correlation with Xi. This is extremely important as, whenever a new arc can be added
in the network structure, the new combination of parents found will have as component, compulsorily, the
attribute (or combination of attributes, if the new number of arcs is more than 2) found previously. Thus, only
the calculations of the future regressions for the combinations that also have as component the nodes whose
arcs were already assigned will be made.

Not only that, but if in the correlations of unitary degree the coefficients R2 present values close to or below
zero, the search for a better configuration can already be finished, as the following ones will also obey the same
trend, characterizing an absence of parents for the attribute in question.
1X

2X

3X

4X

Fig. 1. Bayesian network generated by the MRSL for the base D.
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In an analogous manner, there will be no need to continue the search for the admission of new arcs for each
attribute when verified that the significance of the admission of a new arc is not relevant over the previous
model, given that the posterior structures will also, usually, not present a higher significance.

Another aspect that can be manipulated, together with the previous, is the indication by the user specialist
in the domain of a minimum degree of significance to be verified for the admission of a new arc in the
structure.

The evaluation of the proposed model was made considering both the quality of the Bayesian network
found by the algorithm as well as its computational performance.

For comparing the analysis regarding the quality of the generated network, the Chest Clinic [18] database
was used as application example (usually known as Asia), which denotes a problem of a fictitious medical
diagnosis, of whether a patient has tuberculosis, lung cancer or bronchitis, based on his X-ray, dyspnea, visit
to Asia and smoking status. The database possesses eight binary variables and its Bayesian network presents
eight arcs connecting them (Fig. 2).

Table 2 compares the result achieved by our algorithm (MRSL) with the one from the original Bayesian
network of the Asia database, as well as the results obtained by others five existing algorithms in the literature:
K2 [6], Tetrad [36], Bayes9 [28], BayesN [21] and Genetic-Fuzzy [22]. The Total column presents the number of
arcs found by each algorithms; the column Correct contains the number of arcs that were correctly found; the
column Additional presents the number of arcs that were found and that are not in the original network; and
the column Absent presents the number of arcs that were not found and are present in the original network.

For the performance evaluation of the algorithm, the analysis was made using as testbed experiment the
model presented by the Asia network, which is composed of eight variables and 1000 records, comparing
the results obtained with the ones presented by the K2 algorithm.
VAsia

Tuberc

TbOrCa

X-Ra y

Cancer

Dysp

Bronc

Smoking

Fig. 2. Bayesian network of the database Asia.

Table 2
Comparative of the results obtained for the Asia database

Algorithms Total Correct Additional Absent

MRSL 8 8 0 0
Genetic-Fuzzy 9 8 1 0
K2 8 7 1 1
BayesN 8 5 3 3
Bayes9 4 4 0 4
Tetrad 4 4 0 4



98 Á.L. de Santana et al. / Data & Knowledge Engineering 63 (2007) 91–107
The test made here seeks to verify the performance of the algorithm using as parameter the discretized
states of the database variables, that is, the number of possible states that each attribute can assume. The per-
formance tests were made analyzing the execution time for both algorithms over the database, with its attri-
butes, initially binary, discretized from the two initial states until a maximum of ten. The obtained results
(Table 3) denote the execution times of the algorithms without considering the time spent for reading the data-
base into the memory.

Tables 4 and 5 present the same tests, now also considering an increase in the number of records of the
database to 5000 and 10,000, respectively. Table 6 presents the values, considering only the discretization
space of 10, for a better visualization of the gradual behavior in the increase of the execution time between
the algorithms.
Table 3
Execution times (s) obtained by the algorithms

Number of states MRSL K2

2 0.08 0.1
3 0.08 0.14
4 0.08 0.24
5 0.08 0.51
6 0.08 1.35
7 0.08 3.51
8 0.08 9.1
9 0.08 20.05

10 0.08 44.48

Table 4
Execution times (s) obtained by the algorithms for 5000 records

Number of states MRSL K2

2 0.42 0.48
3 0.42 0.68
4 0.42 0.93
5 0.42 1.32
6 0.42 2.26
7 0.42 4.53
8 0.42 10.27
9 0.42 21.32

10 0.42 45.42

Table 5
Execution times (s) obtained by the algorithms for 10,000 records

Number of states MRSL K2

2 0.84 0.96
3 0.84 1.33
4 0.84 1.78
5 0.84 2.32
6 0.84 3.39
7 0.84 5.81
8 0.84 11.74
9 0.84 22.87

10 0.84 47.05
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Execution times (s) obtained with a number of states of 10

Number of records MRSL K2

1000 0.08 44.48
5000 0.42 45.42

10,000 0.84 47.05
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As it could be verified by the obtained results, the structure learning algorithm based on multiple regres-
sions outperforms on both aspects analyzed: with respect to the quality of the Bayesian network induced
by the algorithm as well as in its computational performance. The algorithm uses in its structure statistical
models with a fundamental theory, especially concerning the prediction and correlation analysis of the vari-
ables; and that, due to its nature, works in an optimized way, improving the performance as the number of
states assumed for the variables increases; which is a common characteristic for databases that represent real
world domains.

5. Maximization model

The objective of this model is to identify the best configuration, among the possible values of the existing
variables in the domain, which maximizes a given attribute, identifying initially the other variables that present
a dependency from it. It is also worth mentioning that, it is possible to accomplish the same process using not
the maximum value, but any other value that may be relevant.

In contrast to the way the genetic algorithms are used in the majority of the hybrid systems proposed in
literature, where they are adopted to optimize the process of learning the structure of Bayesian networks,
as discussed in Section 3. Here, this technique is used for the discovery of the most probable values of the vari-
ables of a Bayesian network, given the value of a key attribute.

The analysis described here were originated from the demands of the research project ‘‘PREDICT – Sup-
port Decision Tool for Load Prediction of Electrical Systems’’, financed by the ‘‘National Agency of Electric
Energy of Brazil – ANEEL’’ in course since September 2004 [31,33]. This project, together with the Govern-
ment of the state of Pará and the Power Supplier of the State of Pará, aims at designing and implementing a
decision support system, using mathematical and computational intelligence methods, to foresee the demand
for energy purchase in the future market and to make inferences on the power system situation from the con-
sumption historical data and its correlations with socio-economic and climatic data.

The case study example, proposed by the domain specialists of the power system market, and used for the
optimization model was to discover under which circumstances the power consumption would be maximized.
For such, the optimization model was based on a few steps.

Firstly, identify which attributes, among those from the database, influences directly in the power consump-
tion; also this way building the Bayesian network structure.

As a means to particularize each section of the paper, the search and score algorithm K2 [6] will be used
here as the learning algorithm instead of the MRSL, searching for the most probable belief network structure
BS given a data set D. The K2 algorithm applies a Bayesian scoring method, according to
P ðBSjDÞ ¼
Yn

i¼1

Yqi

j¼1

CðriÞ
Cðri þ N ijÞ

Yri

k¼1

CðNijk þ 1Þ ð10Þ
where
n number of nodes
qi number of configurations of the parents of the variable Xi

ri number of possible values of Xi

Nijk number of cases in D where Xi is evidenced with its value k, and the configuration of the parents of Xi

is evidenced with the value j

Nij number of observations in which the configuration of the parents of Xi is in evidence with the value j,
being N ij ¼

Pri
k¼1N ijk
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Analyzing the Bayesian network, it was verified, and confirmed by the domain experts, the correlation of

the power consumption with some of the remaining variables, especially with the following: the number of
employments in the sectors of the transformation industries and agriculture and cattle breeding, and the values
of the total turnover and of the dollar; which were shown to be more representative than the others.

Given the knowledge that the variables of number of employments in the transformation industries
(emp_ind), employments in the agriculture and cattle breeding (emp_agro), value of the total turnover (val_-
turn) and the value of the dollar (val_dol) are the main influencers in the variation of the power consumption,
they were used for the next step, which consisted in the creation of a Naive Bayesian network (Fig. 3), in which
all of the remaining attributes (emp_ind, emp_agro, val_turn and val_dol) were dependent of only one, in our
case, the power consumption.

All the attributes were discretized in ten states, according to the frequency of their values, allowing us to
verify the probability associated to each one of them, as well as the conditional probabilities existing between
the variables.

Once the network is set, the next step is, by making use of the data given by the Bayesian network, search
the network attributes for the states that would maximize the power consumption. In this step we use a mod-
ified genetic algorithm.

Here, instead of a cost function to validate the individuals of the population, a Bayesian inference algo-
rithm is implemented (Eq. (11)); each of the individuals of the genetic algorithm represents an inference con-
figuration of the Bayesian network generated randomly (e.g. evidencing the variables emp_ind with the state 7,
emp_agro with state 1, val_turn with 7 and val_dol with 4 generates the individual 2-1-7-4). Each individual is
then, for its classification, submitted to the Bayesian inference module in order to verify the probability in
which the power consumption attribute would be maximized, obtaining, at the end of the iterations, the best
possible configuration of inferences on the Bayesian network for the maximization of the power consumption:
P ðxijc1; c2; . . . ; cnÞ ¼ P ðxiÞ
Yn

k¼1

P ðckjxiÞ ð11Þ
where c1,c2, . . . ,cn are possible evidenced events and xi is the event we want to observe.
However, we would have at the end of this step (after the genetic algorithm analysis) only the respective

states (i.e. band of values) for this maximization, instead of a single value (for each attribute), which is what
we seek. For such, we make use, again, of a genetic algorithm; but this time a traditional genetic algorithm,
whose aptitude function we obtain from the data.

The function used for the genetic algorithm is obtained from a regression of multiple variables made over
the attributes of the network. The multivariate analysis is however made over the consumption data, but con-
sidering only the data instances located within the ranges found in the previous step. Thus, the obtained equa-
tion (presented below) presented a good representativity (R2of approximately 0.9039) over the domain:
Y ¼ 258; 598; 510:5þ 3; 675:6834� X 1 þ 4; 430:9036� X 2 þ 0:4701� X 3 � 12; 182; 208:61� X 4 ð12Þ

where Y represents the power consumption and X1, X2, X3 and X4 represent the values of the attributes em-

p_ind, emp_agro, val_turn and val_dol, respectively.
emp_ind

emp_agro val_turn

val_dol

pow_cons

Fig. 3. Naive Bayesian network.



Table 7
Values of the attributes for the maximization of the consumption value

Attribute Value

emp_ind 5380
emp_agro 3357
val_turn 100,752,576.00
val_dol 2.861
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Based on function (12), the genetic algorithm is then used, thus obtaining the values, for each of the attri-
butes that would maximize the power consumption. Mentioning again that the individuals evaluated by the
aptitude function (12) are only those within the range of values that maximize the value of consumption.
Thus, in order to achieve the occurrence of the maximum consumption, equivalent the 305,760,544 MW h,
it is necessary that the values in Table 7 are observed, for the attributes emp_ind, emp_agro, val_turn and
val_dol.

It is worth mentioning that the optimization model used is restricted not only to the discovery of the max-
imum values of consumption, but can also be used to identify the scenarios that cause a minimum, average
or any other value to be reached by the power supplier, given the variation of the considered economic
aspects.

Among the main results obtained in the ‘‘Predict’’ Project with the use of this model, it is possible to high-
light: the extension of the interpretability of the generated Bayesian networks to measure the causal relation-
ship for the consumption and the socio-economic variables, from the discovery of the values that compose an
optimum combination given a certain target, for example, the consumption; and the interest of those involved
in the Project in using the functionalities of the model for many other scenarios, not only relative to the power
consumption, but also to government actions (e.g. discovered of the variables, that would maximize the
employment and income), has encouraged and certified the use of the proposed model.

6. Markovian models incorporation with Bayesian networks

Despite allowing the verification of the future behavior of its attributes through inferences, the Bayesian
networks do not present means that would allow us to discover how close or distant these events would be
from occurring. In other words, they do not allow us to quantify and point out the time it would take for
the impact of these inferences to occur. As a reference we point out that, in order to extract these time prop-
erties from the Bayesian network and introduce them into a Markovian process we need to be working with a
time series study, being thus working with a given time scale.

A classical initial problem when working with the Bayesian networks in the time would be the existing
necessity to setup conditional probability tables for each discrete unit of time analyzed. Thus, it is assumed,
as well as described in literature, that the focus is to use a stationary random process.

In this work, the time analysis from the modeling of the data and characteristics proceeding from a Bayes-
ian network into a Markov chain is presented. The idea is to establish an isomorphism between a Bayesian
network in time and a discrete time Markov chain.

The model used seeks to analyze the forecast, differently as it would be if a dynamic Bayesian network
would be used or even a hidden Markov model (HMM); it can be however consider as making use of the con-
cepts of HMM, with respect to its theoretical foundations and assumptions regarding non-regular Markov
models and being governed by probability distributions.

The proposal intends then on modeling in a simplified way the Markovian time transition according to a
first-order process, but also intrinsically considering, in its transitions, the other variables of the domain that
might also influence in the behavior of this attribute. That is, just as a Markov chain, a Bayesian network can
be seen as a matrix of attributes that are correlated and that also has an influence over each other throughout
time.

To exemplify the model, a simple example of a Bayesian network can be considered (Fig. 4), composed of
only two variables: Grade and Study; where the grade obtained on a given test depends on the amount of study
applied. It is also assumed that the tests are taken on a monthly time scale.



Study Grade

Fig. 4. Bayesian network mounted with the variables Grade and Study.
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It is considered as possible values for the attributes the following: Study (Hard, Medium, Little); and Grade
(Excellent, Good, Regular).

In this sense, the Bayesian network would also present the values of initial and conditional (for Grade only,
given that it is the only attribute that possesses a parent attribute, that is, a dependence relation of the Grade

given the Study) probabilities.
The dependency model and the probability tables would represent all the data the Bayesian network could

offer us. Following the Markovian modeling, what we are seeking to obtain is the time instant n that, given an
inference, a determined probability configuration of an attribute would happen (e.g. considering our example,
given that we study Hard, when we would obtain a grade Excellent with probability of 70%, Good with 25%
and Regular with 5%).

Given that what we seek is in fact the new configuration of a determined attribute, what we end up needing
is to setup the Markovian transition matrix of this attribute. This is done by mapping the transition proba-
bilities for the states of the attribute onto the matrix, based on the conditional probabilities that it possesses
given its dependencies with the other attributes (e.g. also considering the example, we must map the transition
probabilities of Grade for: Excellent and pass to Good, Excellent to Regular, Excellent and achieving Excellent

again, etc.). That is, we would have to compute the transition probabilities for the states of a given variable,
which Markovianly speaking we can anagously see as the transition probability to achieve an state Nt+1 based
on Nt. Hence we seek to find P(Nt+1 = syjNt = sx) = pxy; thus creating a Markov transition matrix, according
to the model in Table 8.

However, considering only the factor of study in relation to the grade is not enough to verify the relation of
the variable Grade with itself and to make the transition between its states, as the Markov transition matrix
would immediately converge to the stationary state. So, we must also consider the value of the attribute Grade
at a previous point of time, acting together with the variable Study and thus obtaining the transition relations
for the variable Grade.

For such, the first record in the existing historical database is ignored so that we can insert in the analysis,
analogously to a first-order Markovian process, the Previous Grade obtained. Tables 9 and 10 present the mar-
ginal and conditional (Study, Grade and the Grade in the previous period) probabilities of the Current Grade

considering the Study and the Previous Grade (Grade-1).
Table 8
Model of the Markov transition matrix to be mounted

Table 9
Initial probabilities of the Bayesian network

Study Grade Grade Grade-1

Hard (Ha) 0.133 Excellent (E) 0.210 0.333
Medium (Me) 0.534 Good (G) 0.467 0.333
Little (Li) 0.333 Regular (R) 0.323 0.333



Table 10
Conditional probabilities of the Bayesian network – P(GradejStudy \ Grade-1)

Study \ G-1nGrade E G R

Ha \ E 0.934 0.033 0.033
Ha \ G 0.333 0.333 0.333
Ha \ R 0.333 0.333 0.333
Me \ E 0.491 0.491 0.018
Me \ G 0.033 0.934 0.033
Me \ R 0.018 0.491 0.491
Li \ E 0.333 0.333 0.333
Li \ G 0.018 0.491 0.491
Li \ R 0.033 0.033 0.934
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The calculations for the Markov transition matrix would follow:
Table
Marko
pEG ¼ P ðEÞ � ½PðGjHa \ EÞPðHaÞ þ P ðGjMe \ EÞP ðMeÞ þ P ðGjLi \ EÞP ðLiÞ� ð13Þ

Generalizing we would have
pxy ¼
Pn

i¼1P ðsy jsx \ PaiÞ � PðPaiÞPm
j¼1

Pn
k¼1P ðsjjsx \ PakÞ � P ðPakÞ

ð14Þ
where
s observed variable and its respective states
Pa variable that represents the attributes on which variable s is dependent
n number of possible states and/or combinations that the parents of this attribute can assume
m number of states the attribute can assume

Calculating from (14), we obtained the Markov transition matrix presented below (Table 11).
The matrix obtained presents the transition probability values for the states of a given variable analyzed. If

we apply a solution of the chain to find the probability vector at a given time n, we will then have to calculate
the nth power of the random probability matrix. As described by the equations of Chapman–Kolmogorov [2].

In matrix notation, the expression is
P ðnÞ ¼ P ðmÞ � P ðm�nÞ ð15Þ

where P(n) is the transition matrix in the step n. From (15) it can be concluded, therefore, that
P ðnÞ ¼ P n ð16Þ

demonstrating that the matrix in step n corresponds to the nth power of this matrix. Thus, for example, if the
unit of time is discretized in months and if we wanted to obtain the probabilities for the grades occurrence
three months from now, we would have to find the power P3 of the matrix (Table 12).

The analysis and results presented (Tables 11 and 12), considered the behavior of the domain, given the
available data, in time without any inference being made; when considering this aspect, in order to make
the analysis in time given the evidence of a determined state of a variable – as example, considering as fact
that the level of Study applied to make the test was Medium – we would have (Table 13).

Thus, considering the inference made, we would have in a step n = 3 the following matrix (Table 14).
11
v transition matrix obtained



Table 13
Transition matrix considering the inference made – study: medium

Table 14
Transition matrix in the step n = 3 considering the inference made – study: medium

Table 12
States transition matrix in the step n = 3
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Finally, in order to go back from the Markovian transition matrix to the probability table of the variable
we use the following:
P ðsxÞ ¼
Pn

i¼1pixPn
j¼1

Pn
k¼1pkj

ð17Þ
where P is the probability for a given state of the observed variable s; n is the number of possible states that s

can assume; and p represents the transition probabilities among the n states of variable s. Thus finding the
probabilities for each state of the attribute Grade in a time period n = 3 given the inference of Medium Study

applied. The probabilities for the attribute Grade considering the example given here are as follow: Excellent

0.083, Good 0.834 and Regular 0.083.
7. Final remarks

The possibility to represent graphically the structure of the patterns obtained from the data, as well as the
exploratory character of the analysis allowed by the Bayesian networks, enables to indicate more deeply the
relationship between the variables of a domain, favoring the increase of the comprehensibility of the discov-
ered patterns, as well as the identification of the usefulness and relevance of these patters.

In this paper, three techniques to optimize the functioning of the Bayesian networks were presented, seek-
ing, amongst other things, the improvement of its interpretability. The implemented models act in three stages
in respect to the Bayesian networks for a more complete and extended use of its resources.

A new technique was initially presented for the modeling of the graphical structure of a Bayesian network
using multiple regressions as method for the correlation analysis of the attributes. A hybrid model was also
studied. This was based on the association of the interpretation given by the Bayesian networks with genetic
algorithms, in order to obtain, given the value of a parameter-target, the Bayesian combination necessary to
achieve it. Added to that, a Markovian approach to represent correlations in time is also proposed; it intro-
duces innumerable advantages, amongst which we can point out that, the Markovian models possess relatively
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simple solutions compared to its computational effort and to the mathematical complexity involved, which
stimulates and facilitates its use.

With these strategies it is possible to extend the interpretability of the Bayesian networks and adjust them
even further for applications of the real world, providing the decision support systems with innumerable other
possibilities of interpretation and inferences.

As future works, the aspects for the implementation of a wider optimization and applicability will be more
deeply studied, as well as other aspects and problems that are present in the search for the optimum structure
of a Bayesian network, amongst which is the task of learning the structure without the necessity of a previous
ordinance of the variables.
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Cláudio A. Rocha graduated from the University of the Amazon in Data Processing (1991), receiving the masters
degree in Computer Science from the University of São Paulo in 1999. He is currently a professor at the
University of the Amazon and Federal Center of Technological Education of Para. His research areas include
data mining, Bayesian networks and uncertainty.



Solon V. de Carvalho graduated in Mechanics-Aeronautics Engineering from the Technological Institute of
Aeronautics in 1982. He received the MS degree in Analysis of Systems and Applications from the National
Institute for Space Research in 1987, and the PhD degree in Automation-Production from the University of
Toulouse III (Paul Sabatier) in 1991. He is a researcher at the National Institute for Space Research with interest
in the area of Operational Research, focusing on Stochastic Modeling.
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